Class \#18

Pasch's theorem

Base angles of isosceles triangle are

 congruentLet ABC be a triangle with $\mathrm{AC} \cong$
C BC. By Theorem X, $\Varangle C$ has a bisector. Let the bisector of $\Varangle C$ meet $A B$ at D. In triangles $A C D$ and $\mathrm{BCD}, \mathrm{AC} \cong \mathrm{BC}$ by hypothesis. $\Varangle \mathrm{ACD} \cong \Varangle \mathrm{BCD}$, by definition of a bisector. Therefore, triangles ACD and BCD are congruent by SAS. Hence, $\Varangle \mathrm{A} \cong \Varangle \mathrm{B}$.
\qquad

\qquad

Questions:

- Triangle?
- Isosceles?
- Base?
- Angle?
- Congruent?

Triangle

- If A, B and C are three distinct noncollinear points, the triangle $\triangle \mathrm{ABC}$ is the union of segments AB, BC and $A C$. Points A, B and C are called vertices of the triangle, and segments AB, AC and BC are called sides.

Pasch's theorem

- If A, B, C are distinct, noncollinear points and l is any line intersecting AB in a point between A and B , then l also intersects AC or BC . If C does not lie on l, then l does not intersect both AC and BC .
- Is the wording sloppy?
\square Is there redundancy?

Sketch of the proof of Pasch's Theorem

- Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three distinct, noncollinear points and l a line intersecting AB in a point between A and B . Then one of the following happens:
- C lies on l. Then l intersects both BC and AC.
- C does not lie on l. Consider the points A and C. Either
- they lie on the same side of l. In this case l does not intersect AC. However together with A\&B on opposite sides of l, and B4, we conclude that $\mathrm{B} \& \mathrm{C}$ are on opposite sides of l, hence $/$ intersects BC .
- they lie on opposite sides of l which means that AC intersects l. Further, since $\mathrm{A} \& \mathrm{~B}$ are on opposite sides of l, we conclude that $\mathrm{B} \& \mathrm{C}$ are on the same side of l, hence l does not intersect BC.

Angle?

- Given three distinct points A, B and C, the rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are called opposite if $B^{*} A * C$.

A

- An angle with vertex A is a point A together with two distinct nonopposite rays AB and AC , denoted by $\measuredangle \mathrm{CAB}$ and $\triangle \mathrm{BAC}$. These two rays are called the sides of the angle.

To ask:

- Is it a good definition?
- Is it precise?
- If E is a point on ray AB , is
$\lambda E A C$ same as $\not \subset B A C$? Do
you want it to be?
It is the same due to:

- Proposition 3.6: If $\mathrm{A}^{*} \mathrm{~B} * \mathrm{C}$, then B is the only point in common to rays BA and BC , and $\mathrm{AB}=\mathrm{AC}$
- Does the definition correspond to what you think of an angle?

Interior of an angle?

- A point D is in the interior of an angle $Z \mathrm{BAC}$ if D is on the same side of $\overleftrightarrow{A C}$ as B and on the same side of $\overleftrightarrow{A B}$ as C.
- Equivalently,
 int $X \mathrm{BAC}=\operatorname{side}(\mathrm{B}, \overleftrightarrow{\mathrm{AC}}) \cap \operatorname{side}(\mathrm{C}, \overleftrightarrow{\mathrm{AB}})$

Proposition 3.7: Let $\measuredangle \mathrm{BAC}$ be an angle and D any point lying on $\overrightarrow{B C}$. D is in the interior of $\triangle B A C$ iff $B * D^{*} C$.

- Proof: Let $\triangle \mathrm{BAC}$ be an angle and D any point lying on BC.
- If D is in the interior of $\not \mathrm{BAC}$ then B and D are on the same side of $\underset{\mathrm{AC}_{3}}{\overleftrightarrow{\mathrm{BD}}}$ hence BD does not intersect $\overleftrightarrow{A C}$. We know that the line $\overleftrightarrow{\mathrm{BD}}$ does intersect $\overleftrightarrow{\mathrm{AC}}$, hence D lies between the point of intersection, which is C , and B .
C If $\mathrm{B}^{*} \mathrm{D}^{*} \mathrm{C}$, then $\mathrm{BD} \underset{\longleftrightarrow}{\text { does not intersect }} \overleftrightarrow{\mathrm{AC}}$, hence B and $\underset{\longleftrightarrow}{\mathrm{D}}$ are on the same side of $\overleftrightarrow{\mathrm{AC}}$. Similarly, DC does not intersect $\overleftrightarrow{\mathrm{AB}}$, so D and C are on the same side of AB . By definition, D lies in the interior of $\triangle \mathrm{BAC}$.

Not a fact!

- It is not true that if D is in the interior of $\angle \mathrm{BAC}$ that D then lies on a segment "connecting" two sides of the angle.

See the following picture.

