Class #18

Pasch's theorem

Base angles of isosceles triangle are congruent

Let ABC be a triangle with AC \cong BC. By Theorem X, \triangleleft C has a bisector. Let the bisector of $\measuredangle C$ meet AB at D. In triangles ACD and BCD, $AC \cong BC$ by hypothesis. \checkmark ACD $\cong \checkmark$ BCD, by definition of a bisector. Therefore, triangles ACD and BCD are congruent by SAS. Hence, $\bigstar A \cong \sphericalangle B$.

Questions:

- Triangle?
- Isosceles?
- Base?
- Angle?
- Congruent?

Triangle

• If A, B and C are three distinct noncollinear points, the *triangle* Δ ABC is the union of segments AB, BC and AC. Points A, B and C are called vertices of the triangle, and segments AB, AC and BC are called sides.

Pasch's theorem

- If A, B, C are distinct, noncollinear points and *l* is any line intersecting AB in a point between A and B, then *l* also intersects AC or BC. If C does not lie on *l*, then *l* does not intersect both AC and BC.
 - Is the wording sloppy?Is there redundancy?

Sketch of the proof of Pasch's Theorem

- Let A, B, C be three distinct, noncollinear points and l a line intersecting AB in a point between A and B. Then one of the following happens:
 - C lies on *l*. Then *l* intersects both BC and AC.
 - C does not lie on *l*. Consider the points A and C. Either

they lie on the same side of *l*. In this case *l* does not intersect AC. However together with A&B on opposite sides of *l*, and B4, we conclude that B&C are on opposite sides of *l*, hence *l* intersects BC.

they lie on opposite sides of / which means that AC intersects /. Further, since A&B are on opposite sides of /, we conclude that B&C are on the same side of /, hence / does not intersect BC.

Angle?

• Given three distinct points A, B and C, the rays \overrightarrow{AB} and \overrightarrow{AC} are called *opposite* if B*A*C.

А

0

• An *angle* with vertex A is a point A together with two distinct nonopposite rays \overrightarrow{AB} and \overrightarrow{AC} , denoted by $\angle CAB$ and $\angle BAC$. These two rays are called the *sides* of the angle.

А

To ask:

- Is it a good definition?
- Is it precise?
- If E is a point on ray AB, is $\angle EAC$ same as $\angle BAC$? Do you want it to be?
 - It is the same due to:

- Proposition 3.6: If A*B*C, then B is the only point in common to rays BA and BC, and AB=AC
- Does the definition correspond to what you think of an angle?

Interior of an angle?

• A point D is in the *interior* of an angle \angle BAC if D is on the same side of \overrightarrow{AC} as B and on the same side of \overrightarrow{AB} as C.

Proposition 3.7: Let $\angle BAC$ be an angle and D any point lying on \overrightarrow{BC} . D is in the interior of $\angle BAC$ iff B*D*C.

- Proof: Let XBAC be an angle and D any point lying on BC.
 - If D is in the interior of ∠BAC then B and D are on the same side of AC, hence BD does not intersect AC. We know that the line BD does intersect AC, hence D lies between the point of intersection, which is C, and B.
 - C If B*D*C, then BD does not intersect AC, hence B and D are on the same side of AC. Similarly, DC does not intersect AB, so D and C are on the same side of AB. By definition, D lies in the interior of ∠BAC.

Not a fact!

It is not true that if D is in the interior of ∠BAC that D then lies on a segment "connecting" two sides of the angle.

See the following picture.

