Class \#17

LSP

Question - will become a hw6\#1:

- If side $(\mathrm{P}, l) \cap \operatorname{side}(\mathrm{Q}, m)=\varnothing$, what can you say about $\mathrm{P}, \mathrm{Q}, l$ and m ?

In this case we can conclude $\mathrm{P}^{*} \mathrm{~L}^{*} \mathrm{M} \& \mathrm{~L}^{*} \mathrm{M} * \mathrm{Q}$

If $\mathrm{P}^{*} \mathrm{~L} * \mathrm{Q}$ and $\mathrm{P} * \mathrm{M}^{*} \mathrm{Q}$ the following

 picture tells us that in general we can not claim that $\mathrm{P} * \mathrm{~L}^{*} \mathrm{M}$ and $\mathrm{L}^{*} \mathrm{M}^{*} \mathrm{Q}$.We could ${ }_{\mathrm{P}}$ have:

or

If $\mathrm{P} * \mathrm{~L} * \mathrm{M}$

If $\mathrm{P} * \mathrm{~L} * \mathrm{M}$ and $\mathrm{P} * \mathrm{M}^{*} \mathrm{Q}$

then $\mathrm{P}^{*} \mathrm{~L} * \mathrm{Q}$ and $\mathrm{L}^{*} \mathrm{M} * \mathrm{Q}$

Proposition 3.3: If $A^{*} B^{*} C$ and $A * C * D$ then $\mathrm{B}^{*} \mathrm{C} * \mathrm{D}$ and $\mathrm{A} * \mathrm{~B} * \mathrm{D}$.

- By Hw4.1 we know that A, B, C and D are four distinct, collinear points. Let l be the line they all lie on. By Proposition 2.3. there is a point E not lying on l. Since E is not on l and C is, these two points must be distinct. Let EC be the line through E and C (whese existence and uniqueness is guaranteed by $\mathbf{I - 1}$). Note that EC and l are two distinct lines. Since $A D$ meets $\overrightarrow{E C}$ in a point C and $A * C * D$ we conclude that A and D are on opposite sides of EC. Further, A and B are on the same side of $\overline{E C}$. If not, then $A B$ intersects $\widehat{E C}$ in a point, say C'. Note that A* ${ }^{\prime} *$ B. C' lies both on l and on $\widehat{E C}$. Since C also lies on both those lines, by Proposition 2.1 we have $\mathrm{C}=\mathrm{C}^{\prime}$. We hence have $\mathrm{A} * \mathrm{C} * \mathrm{~B}$ and, by hypothesis, $\mathrm{A} * \mathrm{~B} * \mathrm{C}$, which contradicts $\boldsymbol{B}-3$. Therefore, A and B are on the same side of $\overline{\mathrm{EC}}$. This together with A and D on opposite sides of $\overrightarrow{E C}$ gives that B and D are on opposite sides of $\overline{\mathrm{EC}}$ (by Corollary to $\boldsymbol{B}-\mathbf{4}$). Therefore BD intersects EC , and using the same argument as above we conclude that it intersects it in C, hence $B * C *$.

LSP: If $\mathrm{C} * \mathrm{~A} * \mathrm{~B}$ and l is the line through A, B and C , then any point P lying on l lies either on $\overrightarrow{A B}$ or on $\overrightarrow{A C}$.

Let P be a point lying on l. If $\mathrm{P} \in \overrightarrow{\mathrm{AB}}$, the claim follows. If it is not (in which case $P^{*} A * B$), then we would like to show that $\mathrm{P} \in \overrightarrow{\mathrm{AC}}$. Suppose the contrary, that is $\mathrm{P} * \mathrm{~A} * \mathrm{C}$. Let us consider where P could be in relation to C and B . By B3 we have that one of the following holds: $\mathrm{P}^{*} \mathrm{C}^{*} \mathrm{~B}$ or $\mathrm{C}^{*} \mathrm{P} * \mathrm{~B}$ or $\mathrm{C}^{*} \mathrm{~B} * \mathrm{P}$.

- If $\mathrm{P} * \mathrm{C} * \mathrm{~B}$, then by Proposition 3.3 since $\mathrm{P}^{*} \mathrm{~A} * \mathrm{C}$, we get $\mathrm{A} * \mathrm{C}^{*} \mathrm{~B}$, which contradicts our hypothesis.
- If $\mathrm{C} * \mathrm{P} * \mathrm{~B}$, then by Proposition 3.3 since $\mathrm{P} * \mathrm{~A} * \mathrm{C}$, we get $\mathrm{A} * \mathrm{P} * \mathrm{~B}$, and P lies on the AB , which contradicts our assumption.
- If $\mathrm{C}^{*} \mathrm{~B} * \mathrm{P}$, we use $\mathrm{P} * \mathrm{~A} * \mathrm{~B}$ to conclude that $\mathrm{C}^{*} \mathrm{~B} * \mathrm{~A}$, which contradicts our hypothesis.
Our assumption $\mathrm{P}^{*} \mathrm{~A} * \mathrm{C}$ led to contradiction, therefore it must be that $\mathrm{A} * \mathrm{P}^{*} \mathrm{C}$ or $\mathrm{A}{ }^{*} \mathrm{C}^{*} \mathrm{P}$, and P is on AC .

