Class #17

LSP

Question – will become a hw6#1:

If side(P, l) \cap side(Q, m)= \emptyset , what can you say about P, Q, l and m?

In this case we can conclude P*L*M & L*M*Q

If P*L*Q and P*M*Q the following picture tells us that in general we can not claim that P*L*M and L*M*Q.

If P*L*M

If P*L*M and P*M*Q

then P*L*Q and L*M*Q

Proposition 3.3: If A*B*C and A*C*D then B*C*D and A*B*D.

By Hw4.1 we know that A, B, C and D are four distinct, collinear points. Let / be the line they all lie on. By Proposition 2.3. there is a point E not lying on <u>l</u>. Since E is not on l and C is, these two points must be distinct. Let \overrightarrow{EC} be the line through E and C (whose, existence and uniqueness is guaranteed by *I-1*). Note that EC and / are two distinct lines. Since \overrightarrow{AD} meets \overleftarrow{EC} in a point C and A*C*D we conclude that A and D are on opposite sides of EC. Further, A and B are on the same side of \overrightarrow{EC} . If not, then AB intersects \overrightarrow{EC} in a point, say C'. Note that A*C'*B. C' lies both on l and on EC. Since C also lies on both those lines, by Proposition 2.1 we have C=C'. We hence have A*C*B and, by hypothesis, A*B*C, which contradicts **B-3**. Therefore, A and B are on the same side of \overrightarrow{EC} . This together with A and D on opposite sides of \overrightarrow{EC} gives that B and D are on opposite sides of \overrightarrow{EC} (by Corollary to B-4). Therefore BD intersects \overrightarrow{EC} , and using the same argument as above we conclude that it intersects it in C, hence B^*C^*D .

LSP: If C*A*B and *l* is the line through A, B and C, then any point P lying on *l* lies either on \overrightarrow{AB} or on \overrightarrow{AC} .

■Let P be a point lying on *l*. If $P \in \overrightarrow{AB}$, the claim follows. If it is not (in which case P*A*B), then we would like to show that $P \in \overrightarrow{AC}$. Suppose the contrary, that is P*A*C. Let us consider where P could be in relation to C and B. By B3 we have that one of the following holds: P*C*B or C*P*B or C*B*P.

- □ If P*C*B, then by Proposition 3.3 since P*A*C, we get A*C*B, which contradicts our hypothesis.
- □ If C*P*B, then by Proposition 3.3 since P*A*C, we get A*P*B, and P lies on the AB, which contradicts our assumption.
- □ If C*B*P, we use P*A*B to conclude that C*B*A, which contradicts our hypothesis.

Our assumption P*A*C led to contradiction, therefore it must be that A*P*C or A*C*P, and P is on AC.