Class \#15

Don't just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does the proof use the hypothesis?

Paul R. Halmos, I Want to be a Mathematician

Question

- Is the real projective plane still a model (I mean of I1-3 and B1-3)?
- What would $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ mean?
- Not a model of incidence and betweenness: check out the Appendix A in the book.

Definition

- Let l be any line and A, B points not lying on l.
- If $A=B$ or $A B$ contains no point lying on l, then say that A and B are on the same side of l.
- If $A \neq B$ and $A B$ intersects l, then say that A and B are on opposite sides of l.
- Remark:
- "AB contains no point lying on l " means $\mathrm{AB} \cap\{l\}=\varnothing$
- "AB intersects l " means $\mathrm{AB} \cap\{l\} \neq \varnothing$

Plane separation axiom (PSP)

\boldsymbol{B}-4: For any line l and any three points A, B and C not lying on l :

1. If A and B are on the same side of l and B and C are on the same side of l then A and C are on the same side of l.
2. If A and B are on opposite sides of l, and B and C are on opposite sides of l, then A and C are on the same side of l.

Corollary: If A and B are on opposite sides of l and B and C are on the same side of l, then A and C are on opposite sides of l.

Claim: PSP does not follow from LSP and earlier claims.

Model for LSP and I1-3 and B1-3 where PSP is incorrect

- Points: triples of real numbers $\mathbf{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
- Lines: equations of the form $\mathbf{p}=\mathbf{v} \mathrm{t}^{+\mathbf{a}}$
- Lies on: satisfies the equation
- Between: $\mathbf{a}^{*} \mathbf{c}^{*} \mathbf{b}$ if $\mathbf{c}=(1-\mathrm{t}) \mathbf{a}+\mathrm{t} \mathbf{b}, 0 \leq \mathrm{t} \leq 1$

What needs to be done?

- Show that the axioms and LSP are satisfied
- Show that PSP is not satisfied.
- Given a line l and a point P not on l, the side of l containing P is the set
$\operatorname{side}(\mathrm{P}, l)=\{\mathrm{Q} \mid \mathrm{P}$ and Q are on the same side of $l\}$
- side (P, l) is also called a balf-plane bound by l.

Exercise: Prove

Lemma 3.1.5: If A and B are on the same side of l, then

$$
\operatorname{side}(\mathrm{A}, l)=\operatorname{side}(\mathrm{B}, l)
$$

Proof:
To show that side $(\mathrm{A}, l)=\operatorname{side}(\mathrm{B}, l)$ we need to show two things:

1. $\quad \operatorname{side}(\mathrm{A}, l) \subseteq \operatorname{side}(\mathrm{B}, l)$
2. $\quad \operatorname{side}(\mathrm{B}, l) \subseteq \operatorname{side}(\mathrm{A}, l)$.
3. If $\mathrm{C} \in \operatorname{side}(\mathrm{A}, l)$, then by definition A and C are on the same side of l. Since A and B are on the same side of l, by $\boldsymbol{B}-4(\boldsymbol{i}), \mathrm{B}$ and C are on the same side of l. hence $\mathrm{C} \in \operatorname{side}(\mathrm{B}, l)$. This shows that $\operatorname{side}(\mathrm{A}, l) \subseteq \operatorname{side}(\mathrm{B}, l)$.
4. The proof that side $(\mathrm{B}, l) \subseteq$ side (A, l) would proceed in exactly the same way as the one above with roles of side (B, l) and $\operatorname{side}(\mathrm{A}, l)$ reversed.

Is the converse true?

\square What is the converse?

Converse of Lemma 3.1.5:
If side $(\mathrm{A}, l)=\operatorname{side}(\mathrm{B}, l)$ then A and B are on the same side of l.

- Proof:

It remains to be shown that if $\operatorname{side}(\mathrm{A}, l)=\operatorname{side}(\mathrm{B}, l)$ then A and B are on the same side of l. Let Q be a point on the same side of l as A . By definition, $\mathrm{Q} \in \operatorname{side}(\mathrm{A}, l)$. Since $\operatorname{side}(\mathrm{A}, l)=\operatorname{side}(\mathrm{B}, l)$, Q belongs to side (B, l) as well, hence Q and B are on the same side of l. By $\boldsymbol{B 4}(i), \mathrm{A}$ and B are on the same side of l.

Better Lemma 3.1.5

Lemma 3.1.5. Points A and B are on the same side of line l if and only if side $(\mathrm{A}, l)=\operatorname{side}(\mathrm{B}, l)$.

