

More betweenness

Proposition 3.1: For any two distinct points A and B:

1.
$$\overrightarrow{AB} \cap \overrightarrow{BA} = AB$$
 (overlapping rays)
2. $\overrightarrow{AB} \cup \overrightarrow{BA} = \{\overleftarrow{AB}\}$

Prove 1. We will leave 2. for homework

Proof of Proposition 3.1 (1.)

We need to show two things:

- $\underline{AB} \subset \overline{AB} \cap \overline{BA}$ $\overline{AB} \cap \overline{BA} \subset AB$ 1
- 2
- That $AB \subset \overrightarrow{AB} \cap \overrightarrow{BA}$ means that $AB \subset \overrightarrow{AB}$ and $AB \subset \overrightarrow{BA}$. By definition of a ray 1. $\overrightarrow{AB} \subset \overrightarrow{AB}$. By Lemma 3.0(1) AB=BA, and by definition of a ray BA $\subset \overrightarrow{BA}$, so AB $\subset \overrightarrow{BA}$. Hence $\overrightarrow{AB} \subset \overrightarrow{BA}$
- We now show that $\overrightarrow{AB} \cap \overrightarrow{BA} \subset \overrightarrow{AB}$. Let $P \in \overrightarrow{AB} \cap \overrightarrow{BA}$. If P=A or P=B, then $P \in \overrightarrow{AB} \cap \overrightarrow{BA}$. 2. AB by definition of a segment, Suppose that P, A and B are distinct points. Note that they are collinear: $P \in AB \cap BA \Rightarrow P \in AB \Rightarrow P \in AB$ or $A^*B^*P \Rightarrow A^*P^*B$ or A*B*P, hence by **B-1** these three points are collinear. Since A, B, P are three distinct points, by **B-3**, exactly one of the following holds: A*P*B or A*B*P or P*A*B.
 - If A^*B^*P , then by *B-3*, not(A^*P^*B) and not(P^*A^*B). Since not(A^*P^*B) then by *B-1*, not(B*P*A), which by definition of a segment means that $P \notin BA$. Also, not(B*A*B) means not (B^*A^*P) . By definition of a ray, $P \notin BA$ and not (B^*A^*P) show that $P \notin BA$, which contradicts our assumption.
 - If P^*A^*B , similar argument shows that $P \notin \overrightarrow{AB}$, which is a contradiction.
 - If A^*P^*B , then by definition of a segment means that $P \in AB$.

Definition: If C*A*B, then AC and AB are called *opposite rays*. B A

Obvious claim?

■ If C*A*B and *l* is a line through A, B and C then for every point P on *l* either $P \in \overrightarrow{AB}$ or $P \in \overrightarrow{AC}$.

Prove the obvious claim:

If C*A*B and l is a line through A, B and C then for every point P on l either $P \in \overrightarrow{AB}$ or $P \in \overrightarrow{AC}$.

Try #1:

■ If P=A or P=C, we're done. Else P, A and C are distinct, so by *B-3*, one of the following holds:

Try #2:

- If P is A, B or C, we're done.
 P, A and B are distinct, so by *B-3*, one of the following holds:
 1. P*A*B 2. A*P*B 3. A*B*P
- P, A and C are distinct, so by *B-3*, one of the following holds:
 4. P*A*C
 5. A*P*C
 6. A*C*P
 If 2., 3., 5. or 6. done.
 If 1. or 4. P*A*B and P*A*C. So?

Line Separation Property (LSP): If C*A*B and *l* is a line through A, B and C then for every point P on *l* either $P \in \overrightarrow{AB}$ or $P \in \overrightarrow{AC}$.

Equivalently: If C*A*B and / is the line through A, B and C then $\{l\} = \overrightarrow{AB} \cup \overrightarrow{AC}$.

LSP is related to another "obvious" claim: (*B4P*): If A*B*C and A*C*D then B*C*D and A*B*D.

Homework for WEDNESDAY!

Show that *LSP* is independent of *I1-3* and *B1-3*.