Class \#13

More betweenness

Proposition 3.1: For any two distinct points A and B :

1. $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{BA}}=A B$ (overlapping rays)
2. $\overrightarrow{\mathrm{AB}} \cup \overrightarrow{\mathrm{BA}}=\{\overleftrightarrow{\mathrm{AB}}\}$

Prove 1. We will leave 2. for homework

Proof of Proposition 3.1 (1.)

We need to show two things:

1. $2 . \quad \overrightarrow{\mathrm{AB}} \subset \stackrel{\overrightarrow{\mathrm{AB}}}{\overrightarrow{\mathrm{BA}}} \subset \overrightarrow{\mathrm{BA}}$
2. That $\mathrm{AB} \subset \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{BA}}$ means that $\mathrm{AB} \subset \overrightarrow{\mathrm{AB}}$ and $\mathrm{AB} \subset \overrightarrow{\mathrm{BA}}$. By definition of a ray $\overrightarrow{\mathrm{AB}} \subset \overrightarrow{\mathrm{AB}}$. By Lemma $3.0(1) \mathrm{AB}=\mathrm{BA}$, and by definition of a ray $\mathrm{BA} \subset \overrightarrow{\mathrm{BA}}$, so $\mathrm{AB} \subset$ $\overrightarrow{\mathrm{BA}}$. Hence $\mathrm{AB} \subset \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{BA}}$
3. We now show that $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{BA}} \subset \mathrm{AB}$. Let $\mathrm{P} \in \overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{BA}}$. If $\mathrm{P}=\mathrm{A}$ or $\mathrm{P}=\mathrm{B}$, then $\mathrm{P} \in$ AB by definition of a segment, Suppese that P, A and B are distinct points. Note that they are collinear: $\mathrm{P} \in \overrightarrow{\mathrm{AB}} \cap \mathrm{BA} \Rightarrow \mathrm{P} \in \mathrm{AB} \Rightarrow \mathrm{P} \in \mathrm{AB}$ or $\mathrm{A} * \mathrm{~B} * \mathrm{P} \Rightarrow \mathrm{A} * \mathrm{P} * \mathrm{~B}$ or $\mathrm{A}^{*} \mathrm{~B} * \mathrm{P}$, hence by $\boldsymbol{B}-1$ these three points are collinear. Since $\mathrm{A}, \mathrm{B}, \mathrm{P}$ are three distinct points, by $\boldsymbol{B}-\boldsymbol{3}$, exactly one of the following holds: $\mathrm{A} * \mathrm{P} * \mathrm{~B}$ or $\mathrm{A} * \mathrm{~B} * \mathrm{P}$ or $\mathrm{P} * \mathrm{~A} * \mathrm{~B}$.

- If $\mathrm{A}^{*} \mathrm{~B} * \mathrm{P}$, then by $\boldsymbol{B}-\boldsymbol{3}$, $\operatorname{not}(\mathrm{A} * \mathrm{P} * \mathrm{~B})$ and $\operatorname{not}\left(\mathrm{P}^{*} \mathrm{~A} * \mathrm{~B}\right)$. Since not $(\mathrm{A} * \mathrm{P} * \mathrm{~B})$ then by $\boldsymbol{B}-\mathbf{1}$, not $(B * P * A)$, which by definition of a segment means that $P \notin B A$. Also, not $\left(B^{*} A * B\right)$ means $\operatorname{not}\left(\mathrm{B}^{*} \mathrm{~A} * \mathrm{P}\right)$. By definition of a ray, $\mathrm{P} \notin \mathrm{BA}$ and $\operatorname{not}\left(\mathrm{B}^{*} \mathrm{~A} * \mathrm{P}\right)$ show that $\mathrm{P} \notin \mathrm{BA}$, which contradicts our assumption.
- If $\mathrm{P} * \mathrm{~A} * \mathrm{~B}$, similar argument shows that $\mathrm{P} \notin \overrightarrow{\mathrm{AB}}$, which is a contradiction.
- If $\mathrm{A} * \mathrm{P} * \mathrm{~B}$, then by definition of a segment means that $\mathrm{P} \in \mathrm{AB}$.
- Definition: If $\mathrm{C}^{*} \mathrm{~A} * \mathrm{~B}$, then AC and AB are called opposite rays.

Obvious claim?
\square If $\mathrm{C}^{*} \mathrm{~A} * \mathrm{~B}$ and l is a line through A, B and C then for every point P on l either $\mathrm{P} \in \overrightarrow{\mathrm{AB}}$ or $\mathrm{P} \in \overrightarrow{\mathrm{AC}}$.

Exercise:

-Prove the obvious claim:

If $\mathrm{C}^{*} \mathrm{~A} * \mathrm{~B}$ and l is a line through A, B and C then for every point P on l either $\mathrm{P} \in \overrightarrow{\mathrm{AB}}$ or $\mathrm{P} \in \overrightarrow{\mathrm{AC}}$.

Try \#1:

- If $\mathrm{P}=\mathrm{A}$ or $\mathrm{P}=\mathrm{C}$, we're done. Else P, A and C are distinct, so by $\boldsymbol{B}-3$, one of the following holds:
- $\mathrm{P}^{*} \mathrm{~A} * \mathrm{C}$

A*P*C
$\stackrel{\text { A }}{\downarrow}+\mathrm{P}$
$\mathrm{P} \in \overrightarrow{\mathrm{CA}}$
???
$\mathrm{P} \in \overrightarrow{\mathrm{AC}}$

Try \#2:

- If P is A, B or C , we're done.
$\square \mathrm{P}, \mathrm{A}$ and B are distinct, so by $\boldsymbol{B}-\boldsymbol{3}$, one of the following holds:

1. $\mathrm{P} * \mathrm{~A} * \mathrm{~B}$
2. $\mathrm{A} * \mathrm{P} * \mathrm{~B}$
3. $A * B * P$
$\square \mathrm{P}, \mathrm{A}$ and C are distinct, so by $\boldsymbol{B}-\mathbf{3}$, one of the following holds:
4. $\mathrm{P} * \mathrm{~A} * \mathrm{C}$
5. $\mathrm{A} * \mathrm{P} * \mathrm{C}$
6. $\mathrm{A} * \mathrm{C} * \mathrm{P}$

If 2., 3., 5. or 6. done.
If 1. or 4. $\mathrm{P}^{*} \mathrm{~A} * \mathrm{~B}$ and $\mathrm{P}^{*} \mathrm{~A} * \mathrm{C}$. So?

Line Separation Property (LSP): If $\mathrm{C}^{*} \mathrm{~A} * \mathrm{~B}$ and l is a line through A, B and C then for every point P on l either $\mathrm{P} \in \overrightarrow{\mathrm{AB}}$ or $\mathrm{P} \in \overrightarrow{\mathrm{AC}}$.

Equivalently: If $\mathrm{C}^{*} \mathrm{~A} * \mathrm{~B} \xrightarrow{\text { and }} l$ is the line through A, B and C then $\{l\}=\overrightarrow{\mathrm{AB}} \cup \overrightarrow{\mathrm{AC}}$.

LSP is related to another "obvious" claim: (B4P): If $\mathrm{A} * \mathrm{~B}^{*} \mathrm{C}$ and $\mathrm{A} * \mathrm{C} * \mathrm{D}$ then $\mathrm{B}^{*} \mathrm{C} * \mathrm{D}$ and $\mathrm{A} * \mathrm{~B} * \mathrm{D}$.

Homework for WEDNESDAY!

Show that LSP is independent of $\boldsymbol{I 1}-\mathbf{3}$ and $\boldsymbol{B 1} \mathbf{- 3}$.

