Class \#12

Betweenness

Betweenness axioms

- Would you say that one of these points is between the other two?

- \boldsymbol{B}-1: If $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}$, then A, B and C are three distinct points lying on the same line and $\mathrm{C} * \mathrm{~B} * \mathrm{~A}$.

$\boldsymbol{B}-2$: For any two distinct points B and D , there exist points A, C, and E on $\overleftrightarrow{\mathrm{BD}}$ such that $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{D}, \mathrm{B}^{*} \mathrm{C}^{*} \mathrm{D}$ and $\mathrm{B}^{*} \mathrm{D}^{*} \mathrm{E}$.
$\boldsymbol{B}-3$: If A, B and C are three distinct points lying on the same line then one and only one of the points is between the other two.

Food for thought:

- What have we gained by adding these axioms?
- Did we lose anything? Think about models.
- Define segment and ray.

Definitions

- Given two distinct points A and B , the segment AB is the set of all points between A and B , together with A and B .
- $\mathrm{AB}=\{\mathrm{C}: \mathrm{A} * \mathrm{C} * \mathrm{~B}\} \cup\{\mathrm{A}, \mathrm{B}\}$
- Given two distinct points A and B, the ray $\overrightarrow{A B}$ is the set of all points on the segment $A B$ together with all the points C such that $A * B * C$.
- $\overrightarrow{A B}=A B \cup\{C: A * B * C\}$

Lemma 3.0: For any two distinct points A, B: 1. $\mathrm{AB}=\mathrm{BA}$
2. $\mathrm{AB} \not \ni \overrightarrow{\mathrm{AB}}$

Q: How do you show that two sets are equal?
To show that $S \subset T$, you have to show that every element of S is also element of T : if x in S then x in T. To show that $S=T$, you have to show that $\mathrm{S} \subset \mathrm{T}$ and $\mathrm{T} \subset \mathrm{S}$.

Proof of 3.0.

- We first show that $\mathrm{AB} \subset \mathrm{BA}$. Let T be a point in AB . By definition of a segment $\mathrm{A} * \mathrm{~T} * \mathrm{~B}$ or $\mathrm{T}=\mathrm{A}$ or $\mathrm{T}=\mathrm{B}$. If $\mathrm{T}=\mathrm{A}$ or $T=B$, then by definition of a segment $T \in B A$. If $A * T * B$, then by $\boldsymbol{B}-1 \mathrm{~B} * \mathrm{~T} * \mathrm{~A}$, hence by definition of a segment $\mathrm{T} \in$ BA.
Repeat the argument with the roles of AB and BA reversed to conclude that $\mathrm{AB}=\mathrm{BA}$.
- If $T \in A B$, then $\underset{\rightarrow}{T \in} A B$, by definition of a ray. We need to show that $\mathrm{AB} \neq \overrightarrow{\mathrm{AB}}$, which means we need to find a point in $\overrightarrow{\mathrm{AB}}$ which is not in AB . By axiom $\boldsymbol{B}-2$, there exists $\xrightarrow{\longrightarrow}$ point E such that $A * B * E$. By definition of a ray $E \in \overrightarrow{A B}$. By $\boldsymbol{B}-1 \mathrm{~A}, \mathrm{~B}$ and E are distinct points, so $\mathrm{E} \neq \mathrm{A}$ and $\mathrm{E} \neq \mathrm{B}$. Further, by $\boldsymbol{B}-3, \operatorname{not}(\mathrm{~A} * \mathrm{E} * \mathrm{~B})$, thus $\mathrm{E} \notin \mathrm{AB}$.

