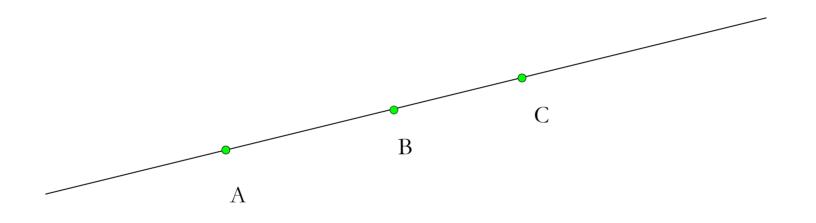


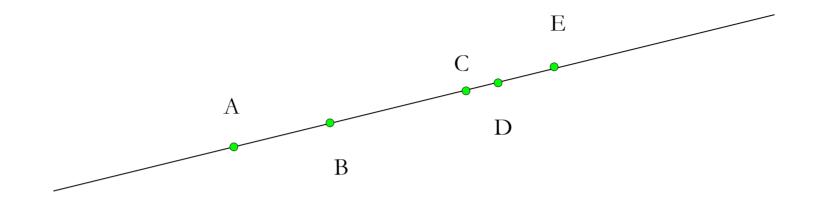
Betweenness

Betweenness axioms

Would you say that one of these points is between the other two?

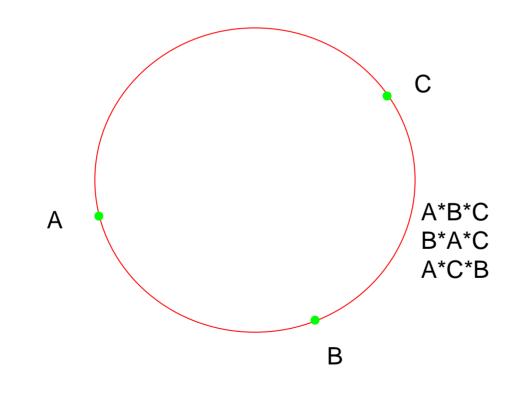


B-1: If A*B*C, then A, B and C are three distinct points lying on the same line and C*B*A.



B-2: For any two distinct points B and D, there exist points A, C, and E on \overrightarrow{BD} such that A*B*D, B*C*D and B*D*E.

B-3: If A, B and C are three distinct points lying on the same line then one and only one of the points is between the other two.



Food for thought:

- What have we gained by adding these axioms?
- Did we lose anything? Think about models.
- Define segment and ray.

Definitions

Given two distinct points A and B, the *segment* AB is the set of all points between A and B, together with A and B.

 $\square AB = \{C: A^*C^*B\} \cup \{A, B\}$

Given two distinct points A and B, the ray AB is the set of all points on the segment AB together with all the points C such that A*B*C.
AB = AB ∪ {C: A*B*C}

Lemma 3.0: For any two distinct points A, B: 1. AB=BA

2. $AB \subseteq \overrightarrow{AB}$

Q: How do you show that two sets are equal?

To show that $S \subset T$, you have to show that every element of S is also element of T: if x in S then x in T. To show that S = T, you have to show that $S \subset T$ and $T \subset S$.

Proof of 3.0.

We first show that AB ⊂ BA. Let T be a point in AB. By definition of a segment A*T*B or T=A or T=B. If T=A or T=B, then by definition of a segment T∈ BA. If A*T*B, then by *B-1* B*T*A, hence by definition of a segment T∈ BA.

Repeat the argument with the roles of AB and BA reversed to conclude that AB=BA.

If T∈ AB, then T∈ AB, by definition of a ray. We need to show that AB ≠ AB, which means we need to find a point in AB which is not in AB. By axiom *B-2*, there exists a point E such that A*B*E. By definition of a ray E ∈ AB. By *B-1* A, B and E are distinct points, so E ≠ A and E ≠ B. Further, by *B-3*, not(A*E*B), thus E ∉ AB.