Class \#10

Affine and projective planes

Hyperbolic plane (the upper half plane model)

- Points are ordered pairs of real numbers (x, y), where $\mathrm{y}>0$.
- Lines are
- Subsets of vertical lines that consist of points (x, y), with $y>0$
- Semicircles whose centers are points $(x, 0)$, where x is a real number

.

Model \#5: H^{2}

- Hyperbolic plane is also a model of incidence geometry
- It satisfies hyperbolic parallel postulate:
- For every line l and every point P not lying on l there are at least two lines that pass through P and are parallel to l.

Poincaré's Half-Plane Model

The points of the Upper Half-Plane Model are the points contained in a half-plane determined by a line AB named the boundary line
The lines are: (i) semicircles with center on the boundary line (ii) rays perpendicular to the boundary line. The isometries are the compositions of inversions with center on the boundary line.

A

Hall-Plane Model Credits $\rfloor \boldsymbol{| c |}$
$\square \square \square \mathrm{B}|\bar{\square}| \underline{\mathrm{U}}\left|-\left|\frac{\mathbb{\pi \sqrt { 2 }}}{3}\right|\right.$

Affine plane geometry

- The axioms are:
- I-1, I-2, I-3 \& EuclideanPP
- An affine plane is a model of affine plane geometry
- Q: Give two examples of affine planes.
- A:
- Cartesian plane
- Model \#2: 4 points and 6 lines

Exercise

- Can you prove:
- There are four points.
in incidence geometry?
- No, because there is a model\#1 (in which there are only three points) of incidence geometry in which this statement is clearly incorrect.
- Can you prove it in affine geometry?
- Proof: By axiom I-3 there exist three distinct points P, Q and R. By axiom $\mathrm{I}-1$ there is a unique line l passing through P and Q . By our choice of points P, Q, and R the point R does not lie on $l(\mathrm{I}-3$ says that no line is incident with all three points P, Q and R). Euclidean parallel postulate there is a unique line m passing through R parallel to l. By I-2 there are at least two distinct points on m, hence there must exist a point S on m different from R. By definition of parallel lines S can not equal P or Q , hence we have found four distinct points: $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S .

Questions to ask when adding an axiom

- Why?
- Is the axiom independent of others?
- Is the new system consistent ?

Consistency

- A system is consistent if it is impossible to derive a contradiction.
- Q: Why would being able to derive a contradiction be bad?
- A: Everything follows from contradiction. Every statement you could possibly imagine would be a theorem in that system.

Modified Model\#2

- For each set of parallel lines add a new point to the model\#2 that will lie on each of those parallel lines. If a line does not have any parallels then add to the model\#2 a new point that will lie on that line only.
- Write out all the points and all the lines.
- Points: A, B, C, D, E, F, G
- Lines: $\{A, B, E\},\{C, D, E\},\{A, C, F\},\{B, D, F\}$, $\{\mathrm{A}, \mathrm{D}, \mathrm{G}\},\{\mathrm{B}, \mathrm{C}, \mathrm{G}\}$
- Is this a model of incidence geometry?
- No, because the first axiom is not satisfied for points E and F , for example. We need to add another line: $\{\mathrm{E}, \mathrm{F}, \mathrm{G}\}$.
- Which parallel postulate holds in this new model?

