Notations and definitions

There are certain terms that I will assume you know. Here is a refresher sheet.

1 Sets

A set is a collection of things of any kind. If B is a set we call the "things" in B the elements or members of B.
$b \in B$ reads ' b is an element of B '
$b \notin B$ reads ' b is not an element of $B '$

Suppose A and B are two sets.

We say that A is a subset of B, and we write $A \subset B$, if every element of A is also an element of B. $A \cup B$ is called the union of A and B and it consists of all elements that are either in A or in B :

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

$A \cap B$ is called the intersection of A and B and it consists of all elements that belong to both A and B :

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

$A \backslash B$ is called the difference of A and B and it consists of all elements that belong to A, but not to B :

$$
A \backslash B=\{x \mid x \in A \text { and } x \notin B\}
$$

We will almost always write sets in the set notation. For example, the set of all even integers, $2 \mathbb{Z}$, can be written as follows:

$$
2 \mathbb{Z}=\{x \in \mathbb{Z} \mid x=2 y, \text { for some } y \in \mathbb{Z}\}
$$

Sets that are important to us:

$$
\begin{array}{ll}
\mathbb{N}=\{1,2,3,4,5,6,7, \ldots\} & \text { natural numbers } \\
\mathbb{Z}=\{x \mid x=0 \text { or } x \in \mathbb{N} \text { or }-x \in \mathbb{N}\} & \text { integer numbers } \\
\mathbb{Q}=\left\{x \mid \exists p \in \mathbb{Z}, q \in \mathbb{Z} \backslash\{0\} x=\frac{p}{q}\right\} & \text { rational numbers }
\end{array}
$$

However, there are numbers that are not rational, i.e. they can not be represented as a fraction. These numbers are called irrational. The union of all rational and irrational numbers is called the set of real numbers, \mathbb{R}. Certain subset of \mathbb{R} appear often and warrant getting special names:

$$
\begin{array}{ll}
(a, b)=\{x \in \mathbb{R} \mid a<x<b\} & \text { open interval } \\
{[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}} & \text { closed interval } \\
{[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}} & \text { semi-open interval }
\end{array}
$$

2 Functions

Let X and Y be two sets. A function f from X to $Y, f: X \rightarrow Y$, is an assignement that to each element $x \in X$ assigns a unique element of $Y, f(x)$, called the value of f at x. X is called the domain of f, and Y is its codomain. The range (image) of f is the set of all possible values of f :

$$
\operatorname{Im}(f)=f(X)=\{y \in Y \mid \exists x \in X y=f(x)\}
$$

In general, $\operatorname{Im}(f) \subset Y$, but it those two sets are equal we say that f is onto (surjective). Equivalently, if the equation $f(x)=y$ has at least one solution for each $y \in Y, f$ is onto.
f is 1-1 (injective) if $f(x)=f(z) \Longrightarrow x=z$. Equivalently, f is 1-1 if the equation $f(x)=y$ has at most one solution for each $y \in Y$.

If f is both 1-1 and onto, that is if the equation $f(x)=y$ has EXACTLY one solution for each $y \in Y$, we say that f is invertible, in which case there is a function $f^{-1}: Y \rightarrow X$ such that:

$$
\begin{aligned}
& f^{-1}(f(x))=x \quad \forall x \in X \\
& f\left(f^{-1}(y)\right)=y \quad \forall y \in Y
\end{aligned}
$$

If $g: Y \rightarrow Z$ is another function we form the composition of f and $g, g \circ f$, which is defined as follows:

$$
(g \circ f)(x)=g(f(x)) \quad \forall x \in X
$$

