

Fall 2007

Show work! All work!

13. Short answers: (16 pts)
a. The cube (or block) represents what in base 4 ? $4^{3}=64$
b. Your favorite problem solving strategy is draw a diagram
c. A set B is a subset of set C if every element of B is also an clement of C.
d. The set of digits needed for base 4 numbers $=\{0,1,2,3\}$
e. $101102=1 \cdot 2^{4}+1 \cdot 2^{2}+1 \cdot 2=16+4+2=22$ in base ten.
f. Show three different correspondences between sets $\{1,2,3,4\}$ and $\{x, y, z, w\}$

3)

g. $\{5,10,15, \ldots\}$ G $\{3,6,9,12, \ldots\}=\frac{\{15,3}{2}$
$\{, \mathrm{e}, \mathrm{a}\}=\left\{a_{1}, a, s, y\right\}$
23. Do two of the following three. Cross through the one you do not wish to be graded (8 pts)
a. $935-758$ using base ten blocks clearly marking all the trading and regrouping you do.
b. $23_{6}-5_{6}$ using a number line.
c. $231{ }_{5}+423_{5}$ using base five blocks.
a) 935 :

This can be done in several ways. I'll start matching up pieces from 758 with corresponding paces in 935 , which w ll be the ones we take away and well keep track of what is left to do. I'II start in green in the above picture. So what we have left is
\qquad to finish subtracting I need some longs and singles, so 1 am going to
 regroup one of the fats first into

I_ ITMAIMOM1 $\begin{array}{r}\text { ama na } \\ \text { ana }\end{array}$
So $\quad 935-758=177$
b) $23_{6}-5_{6}=146$

c) $231_{5}+4235$

103. Complete and shade this Venn diagram: (15 pts)

Fill in all numbers in this diagram. 24 students were interviewed:
8 said they play the piano.
10 said they play the guitar.
6 said they only play the guitar.
a.

b.

Describe that person in words:
Students who played a guitar but did not bay piano.
113. Do three of the four on this problem. Cross out the one you are not doing.
(12 pts) Write the base ten number thirty-seven in three of the four ways (clearly mark which one you are working out):
a. Bundling sticks with bundles of 5
b. Chip abacus with base 8
c. flats, longs and units, base three
d. numerals in base 2

c)

d)

$$
\frac{37: 32}{5}=1
$$

$$
5: 4=1
$$

32	16	0	1	1
2	1			
1	0	0	1	0

$$
100101_{(2)}
$$

123. (24 pts)
a. Write all of the subsets of $\{\mathrm{I}, \nabla, \mathrm{M}\}$. How do you know you have all them?
$\phi,\{I\},\{0\},\{M\}$
a set of 3 elements

$$
\begin{array}{ll}
\{I, O\} & \{0, M\} \\
\{I, M\} & \{I, O, M\}
\end{array}
$$

has $2^{3}=8$ subsets. In general, a set with n elements has 2^{n} subset
One way to see this is to notice that a subset can have at most n elements. Let's say $A=\{1,2,3, \ldots, n\}$ and we need to know how many subsets A has
If B is a subset of A then I can think of building B as follows

$$
B=\{-,-,-,-, \ldots,-,-\}
$$

I'll put n empty slots and each will represent an "eLement of A in the same order in which they appear in A. Then for each slot 1 have 2 choices i either

I will put that element in B or I will not. So we have $2 \cdot 2 \cdot 2 \ldots .2=2^{n}$
 for first el. for second el. for third el. for $n^{\text {th }}$ el.
possible subsets.
b) If set A has 13 elements and set B has 8, what are the greatest and the least number of elements which could be in each of these. Make drawings to support your answer.
$A \cup B:$
this greatest $13+8=21$ and B are when A and B are disjoint

AUB is shaded blue, and has 21 clements.

A-B greatest
13 and this happens when A and B are disjoint

Ar β is shaded blue and has 13 clements $A \cap B \quad$ greatest 8
when $B \subseteq A$ then $A \cap B=B$ and has 8 clements

least 13
This happens when

$$
B \subseteq A
$$

$A \cup B=A$ and has 13 elements.

$$
\text { least } 13-8=5
$$

and this happens
when $B \subseteq A$

least 0
when $A \cap B=\phi$
That is when A and Bare disjoint

203. Do 2 of these 3 and cross clearly the one you do not want to be graded. (24 pts)
a) Kisha is 12 years old and her brother Albert is 2 years old. In how many years will Kisha be twice as old as Albert?
b) Fierrante rents a compact car for $\$ 25$ a day plus 20 cents per mile. If he rents the car for one day, how far can he go for $\$ 50$?
c) A frog sits at the bottom of a 15 foot deep well. Each day he climbs 3 feet, and each night he falls back 2 feet. How long will it take the frog to get out of the well?
a) In y years from now kish will be $12+y$ years old and her brother will be 2ty years old. We would like to know for which y we will have

$$
\begin{aligned}
& (12+y)=2(2+y) \\
& 12+y=4+2 y \\
& 8=y
\end{aligned}
$$

In 8 years Kish will be 20 and Albert will be 10 , which is half of Kisha's age.
b) If fierrantz rents a car for one day then he'll have to pay daily fee of $\$ 25$ which will leave him with $\$ 25$ to spend on mileage. Each mile costs him 20 cants $=\$ 0.2$ so he can drive

$$
\frac{\$ 25}{\$ 0.2 / \mathrm{mil}}=125 \mathrm{mi}
$$

c) If the wall is 5 feet deep we can draw a little picture
 so $1 t$ took the frog 3 days to climb out of 5 foot well.
\#2

We also notice That after one day i ones night the frog has advanced 1 foot except the last day. The last day the frog dan go 3 feet \dot{q} get out of the well. So, if the well is 15 ft deep then once the frog is at 12 feet it just needs one day to get out. But for Those first 12 feet it will need a day for each foot, so we have a total of 13 days.
213. Do one of these two problems. Cross out the one you decide not to do.(14 pts)
a) A "hexagon train" is formed by placing hexagons side-by-side, in a row. The perimeter of a hexagon train equals the number of units around the outside of the entire train. For example, the perimeter of this hexagon train is shown in bold:

a) What is the perimeter of the hexagon train made with 4 hexagons? 5 hexagons? 100 hexagons?
b) Find a way to express the perimeter of a hexagon train made with any number of hexagons.

Write a clear and detailed explanation of your method.
c) Is there a hexagon train with a perimeter of 583 units? Why or why not?

6

10

14

18
It appears that every time we add a hexagon the perimeter increases by 4. This can be explained on the picture b/c adding a new hexagon (say on the right) amounts to adding a roof $八$ and an upside down roof V while the vertical side is just moved lover to the right For example from figure 2 (in bin q) to figure 3:

So the first figure has 6 sides and each new is 4 bigger than the previous one.

| fig\# 1 | 2 | 3 | 4 | 5 | 6 | | 100 | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| per. 6 | 10 | 14 | 18 | 22 | 24 | \cdots | $o f$ | |

$$
\begin{aligned}
& P_{2}=P_{1}+4 \\
& P_{3}=P_{2}+4=P_{1}+2 \cdot 4 \\
& P_{4}=P_{3}+4=P_{1}+3.4
\end{aligned}
$$

Instead of reprasenting P_{n}

$$
P_{n}=P_{n-1}+\psi=P_{1}+(n-1), 4 \leftarrow \text { in terms of } P_{n-1} w_{4} \text { can }
$$ trace it back all the way to p_{1} and have an expression in terms / P, and the figure's number:

$$
\begin{aligned}
P_{n} & =P_{n-1}+4=P_{n-2}+4+4=P_{n-2}+2 \cdot 4=P_{n-3}+4+2 \cdot 4=P_{n-3}+3 \cdot 4= \\
& =\ldots=P_{1}+(n-1) \cdot 4=6+(n-1) \cdot 4
\end{aligned}
$$

c) The question becomes: Is there an n such that $P_{n}=583$? If there were Then we would have

$$
\begin{aligned}
6+(n-1) 4 & =583 \\
4(n-1) & =577
\end{aligned}
$$

and we can see that there is no whole number n that would work here (577 is not divisible by 4). So there is no train That is 583 long.
b. Shade these and describe in words who is in the set. $\mathrm{T}=$ Trumpet players

S = Sophomores
$\mathrm{E}=$ Excels in math

Shade $(T \cup E)-S$ and Describe that person in words:

(TVE)-S

* A person who 18 in

$$
(T \cup E)-S \text { is a student }
$$

who plays a trumpet or
excess in math, and is
not a sophomore.

Shade $(T \cap S) \cup E$ and Describe that person in words:

* A person in this set

$$
+2
$$

is a student who excide in math or a sophomore who pays a
trumpet. trumpet.

