Number Theory

Primes, factorization, divisibility rules

"divisible by"

- Let a and b be any whole numbers and $\mathrm{a} \neq 0$. We say that a divides $b, a \mid b$, if there is a whole number x such that $\mathrm{ax}=\mathrm{b}$.
- The following mean the same thing:
- a divides b ,
- b is divisible by a,
- a is a factor of b,
- b is a multiple of a

Our homework problem \#4

- 1001|abcabc
- 7, 11, 13|1001,

So it must be that $7,11,13 \mid a b c a b c$

Claim: If d is not 0 and $\mathrm{d} \mid \mathrm{e}$ then $\mathrm{d} \mid \mathrm{ef}$.

Grid rectangle problem

- For numbers of tiles 1 through 24 build all grid rectangles that you can.
- How do you know you have all of them?
- What patterns do you notice?

Claims

Primes and composites

- A counting number with exactly 2 different factors is called a prime number.
- A counting number with more than two factors is called a composite number.
- Examples of prime numbers:
- Examples of composite numbers:

What do you notice?

1	2	3	$\begin{gathered} 4 \\ =2 \cdot 2 \end{gathered}$	5	$\begin{gathered} 6 \\ =2 \cdot 3 \end{gathered}$	7	$\begin{gathered} 8 \\ =2 \cdot 2 \cdot 2 \end{gathered}$	$\begin{gathered} 9 \\ =3 \cdot 3 \end{gathered}$	$\begin{gathered} 10 \\ =2.5 \end{gathered}$
11	$\begin{aligned} & 12 \\ = & 2 \cdot 2 \cdot 3 \end{aligned}$	13	$\begin{gathered} 14 \\ =2.7 \end{gathered}$	$\begin{gathered} 15 \\ =3.5 \end{gathered}$	$\begin{gathered} 16 \\ =2 \cdot 2 \cdot 2 \\ .2 \end{gathered}$	17	$\begin{aligned} & 18 \\ &= 2 \cdot 3 \cdot 3 \end{aligned}$	19	$\begin{aligned} & 20 \\ &=2 \cdot 2 \cdot 5 \end{aligned}$
$\begin{gathered} 21 \\ =3.7 \end{gathered}$	$\begin{gathered} 22 \\ =2 \cdot 11 \end{gathered}$	23	$\begin{gathered} 24 \\ =2 \cdot 2 \cdot 2 . \\ 3 \end{gathered}$	$\begin{gathered} 25 \\ =5.5 \end{gathered}$	$\begin{gathered} 26 \\ =2.13 \end{gathered}$	$\begin{gathered} 27 \\ =3 \cdot 3 \cdot 3 \end{gathered}$	$\begin{gathered} 28 \\ =2 \cdot 2 \cdot 7 \end{gathered}$	29	$\begin{gathered} 30 \\ =2 \cdot 3 \cdot 5 \end{gathered}$

Question:

- Can every number be written as product of primes?
- Solve simpler problem: Can 72 be written as product of primes?

Unique prime factorization

- Each composite number can be written as a product of primes in exactly one way (up to the order of factors).
- $72=2^{3} \cdot 3^{2}$
- $81=3^{4}$

Food for thought

- Is 401 prime or not? If it is not, what is its prime factorization?
- What about 5439?
- What about 15249 ?
- How would you approach this question?
- How do we deal with large examples?
- I know that none of these are divisible by $2, \underline{5}$ or $\underline{10}$. How?

Divisibility by 2

- A whole number is divisible by 2 if its ones digit is $0,2,4,6$, or 8 .
- Proof:
- Claim: If a number divides two other numbers then it divides their sum as well.
- a|m and a|n, so
$a \mid(m+n)$

Divisibility by 5

- A whole number is divisible by 5 if its ones digit is 0 or 5 .
- Proof:

Divisibility by 10

- A whole number is divisible by 10 if its ones digit is 0 .
- A whole number is divisible by 10 if it is divisible by both 2 and 5 .
- If a whole number is divisible by both 2 and 3 does it mean it's divisible by 6 ?
- If a whole number is divisible by 4 and 6 is it divisible by 24 ?

Food for thought

- Is 401 prime or not? If it is not, what is its prime factorization?
- What about 5439?
- What about 15249 ?
- Not divisible by 2, 5
- What about 3? 7? 11? 13? 17?

Divisibility by 3

- A whole number is divisible by 3 if the sum of its digits is divisible by 3 .
- Proof:
- $3 \nmid 401$
- 3|5439
- 3 | 15249

401!@!*\$\#@^\%\#\$!(^\%

- What about this 401 ? How far should we go?
- I think once we're past 20 all hope is gone and we should declare it prime! Am I right?

Grid rectangle problem

- How many grid rectangles are there for any number m ?

