Number Theory

Primes, factorization, divisibility rules

"divisible by"

- Let a and b be any whole numbers and a≠0.
 We say that a divides b, a|b, if there is a whole number x such that ax=b.
- The following mean the same thing:
 - a divides b,
 - b is divisible by a,
 - a is a factor of b,
 - b is a multiple of a

Our homework problem #4

- 1001|abcabc
- 7, 11, 13|1001,

So it must be that 7, 11, 13|abcabc

Claim: If d is not 0 and d|e then d|ef.

Grid rectangle problem

- For numbers of tiles 1 through 24 build all grid rectangles that you can.
- How do you know you have all of them?
- What patterns do you notice?

Claims

Primes and composites

- A counting number with exactly 2 different factors is called a *prime number*.
- A counting number with more than two factors is called a *composite number*.
 - Examples of prime numbers:
 - Examples of composite numbers:

What do you notice?

1	2	3	4 =2·2	5	6 =2·3	7	8 =2·2·2	9 =3·3	10 =2·5
11	12 =2·2·3	13	14 =2·7	15 =3∙5	16 =2·2·2 ·2	17	18 =2·3·3	19	20 =2·2·5
21 =3·7	22 =2·11	23	24 $=2\cdot2\cdot2\cdot$ 3	25 =5∙5	26 =2·13	27 =3·3·3	28 =2·2·7	29	30 =2·3·5

Question:

- Can every number be written as product of primes?
- Solve simpler problem: Can 72 be written as product of primes?

Unique prime factorization

 Each composite number can be written as a product of primes in exactly one way (up to the order of factors).

•
$$72 = 2^3 \cdot 3^2$$

• 81=3⁴

Food for thought

- Is 401 prime or not? If it is not, what is its prime factorization?
- What about 5439?
- What about 15249?
 - How would you approach this question?
 - How do we deal with large examples?
 - I know that none of these are divisible by <u>2</u>, <u>5</u> or <u>10</u>. How?

- A whole number is divisible by 2 if its ones digit is 0, 2, 4, 6, or 8.
- Proof:

- Claim: If a number divides two other numbers then it divides their sum as well.
 - a|m and a|n, so

a|(m+n)

- A whole number is divisible by 5 if its ones digit is 0 or 5.
- Proof:

- A whole number is divisible by 10 if its ones digit is 0.
- A whole number is divisible by 10 if it is divisible by both 2 and 5.

 If a whole number is divisible by both 2 and 3 does it mean it's divisible by 6?

 If a whole number is divisible by 4 and 6 is it divisible by 24?

Food for thought

- Is 401 prime or not? If it is not, what is its prime factorization?
- What about 5439?
- What about 15249?
 - Not divisible by 2, 5
 - What about 3? 7? 11? 13? 17?

• A whole number is divisible by 3 if the sum of its digits is divisible by 3.

- 3∤401
- 3 | 5439
- 3 | 15249

401!@!*\$#@^%#\$!(^%

- What about this 401? How far should we go?
- I think once we're past 20 all hope is gone and we should declare it prime! Am I right?

Grid rectangle problem

 How many grid rectangles are there for any number m?