Introduction

What is MATH 4010 about?

Warm-up

- Please take a few of minutes to read the warm-up problems. Once you had time to do that, you are welcome to share your thoughts/solutions with the group members.
- We will discuss what you come up with in about 15 minutes.

Multiplication

How did the students get each of these numbers?

49	49	49
× 25	× 25	× 25
405	225	1250
108	_100	25
1485	325	1275

Division

• How do you solve a problem like this one?

$$1\frac{3}{4} \div \frac{1}{2} =$$

What would be a good story problem for $1\frac{3}{4} \div \frac{1}{2}$?

Decimals

1.	.5	7	.01	11.4
2.	.60	2.53	3.12	.45
3.	.6	4.25	.565	2.5

 These lists are all equally good for assessing whether students understand how to order decimal numbers.

Investigations

 Imagine that one of your students comes to class very excited. She tells you that she has figured out a theory that you never told the class. She explains that she has discovered that as the perimeter of a closed figure increases, the area also increases. She shows you this picture to prove what she's doing:

How would you respond to this student?

Questions

- Why do you think I chose to start the class this way?
- Why do you think I chose the questions in this particular way?

Learning mathematics

- Learning mathematics as a student:
 - Learning for your own understanding
 - Making sure you can solve the problems, do your own work
- Making a transition to learning mathematics as a teacher
 - Learning not just so you understand, but so that you can attend to others' learning
 - Practicing talking mathematics
 - Focusing on explanations and reasons
 - Developing multiple ways to represent, solve, explain.

- Focus on content and applications: learning mathematics for teaching
- Unpacking mathematical ideas
- Developing mathematical practices
- Getting familiarized with elementary curriculum

Mathematical content

- Problem solving
- Sets: operations, relations, number sets
- Whole numbers: operations
- Number theory
- Fractions
- Decimals
- Real numbers
- Patterns and functions

Course work

Assignments/quizzes, portfolio Midterms (2)

Final

Practicum report

Attendance

20)%	
36	6%	
~	- ~ ′	

25%

15%

4%

Your work

- Read your textbook!
- Portfolio will count as 2 assignments
- Assignments one due each Wednesday at the beginning of each class. At the end – quiz.
- We will be developing community documents. You will be required to meaningfully contribute to those.
- <u>Homework</u>

Dinosaur problem

- First part of the problem
- Take a couple of minutes to solve the problem
- Second part of the problem

Pool border problem

- How many 1 by 1 (square) tiles does it take to make a border around a square pool?
 - What was the first thing you did?
 - How did you think about the problem?
 - How did you approach the problem?
 - How big is the pool?
 - How many different methods can you find to solve this problem?

Strategies used?

- Add your own. I remember these ones:
 - Draw a picture
 - Consider a special cases, then generalize
 - Look for a formula

To think about:

• How many 1 by 1 tiles does it take to make a border around a square pool?

We have a method to find the number of tiles: If S was the length of the pool then it would take S+S+S+S+4 tiles to make a border.

Can you think of other methods to decide how many tiles you need for the border of any size pool?

