Introduction

What is MATH 4010 about?

Warm-up

- Please take a few of minutes to read the warm-up problems. Once you had time to do that, you are welcome to share your thoughts/solutions with the group members.
- We will discuss what you come up with in about 15 minutes.

Multiplication

- How did the students get each of these numbers?

49
$\times 25$
405
108
1485

49
$\times 25$
225
100
325

49
$\times 25$
1250
25
1275

Division

- How do you solve a problem like this one?

$$
1 \frac{3}{4} \div \frac{1}{2}=
$$

What would be a good story problem for $1 \frac{3}{4} \div \frac{1}{2}$?

Decimals

whether students understand how to order decimal numbers.

Investigations

- Imagine that one of your students comes to class very excited. She tells you that she has figured out a theory that you never told the class. She explains that she has discovered that as the perimeter of a closed figure increases, the area also increases. She shows you this picture to prove what she's doing:

Perimeter $=16 \mathrm{~cm}$
Area $=16$ square cm
4 cm

How would you respond to this student?

Questions

- Why do you think I chose to start the class this way?
- Why do you think I chose the questions in this particular way?

Learning mathematics

- Learning mathematics as a student:
- Learning for your own understanding
- Making sure you can solve the problems, do your own work
- Making a transition to learning mathematics as a teacher
- Learning not just so you understand, but so that you can attend to others' learning
- Practicing talking mathematics
- Focusing on explanations and reasons
- Developing multiple ways to represent, solve, explain.

Course goals

- Focus on content and applications: learning mathematics for teaching
- Unpacking mathematical ideas
- Developing mathematical practices
- Getting familiarized with elementary curriculum

Mathematical content

- Problem solving
- Sets: operations, relations, number sets
- Whole numbers: operations
- Number theory
- Fractions
- Decimals
- Real numbers
- Patterns and functions

Course work

Assignments/quizzes, 20\% portfolio
Midterms (2)
36\%

Final
25\%

Practicum report
15\%

Attendance
4\%

Your work

- Read your textbook!
- Portfolio - will count as 2 assignments
- Assignments - one due each Wednesday at the beginning of each class. At the end - quiz.
- We will be developing community documents. You will be required to meaningfully contribute to those.
- Homework

Dinosaur problem

- First part of the problem
- Take a couple of minutes to solve the problem
- Second part of the problem

Pool border problem

- How many 1 by 1 (square) tiles does it take to make a border around a square pool?
-What was the first thing you did?
- How did you think about the problem?
- How did you approach the problem?
- How big is the pool?
- How many different methods can you find to solve this problem?

Strategies used?

- Add your own. I remember these ones:
- Draw a picture
- Consider a special cases, then generalize
- Look for a formula

To think about:

- How many 1 by 1 tiles does it take to make a border around a square pool?

We have a method to find the number of tiles: If S was the length of the pool then it would take
S+S+S+S+4
tiles to make a border.
Can you think of other methods to decide how many tiles you need for the border of any size pool?

