

Questions

- Are whole numbers fractions?
- If Annie got $1 / 8$ of a pie and Manny got $1 / 13$ of a pie, who ate more pie?
- If Annie got $2 / 3$ of a pie and Manny got $3 / 4$ of a pie, who ate more pie?
- How can we compare fractions? Are there some that are easier to compare?

Comparing fractions

- Convert fractions into equivalent ones that are easier to compare.
- OR
- Use your fraction sense.

$$
\begin{aligned}
& \frac{2}{3}=\frac{2 \cdot 4}{3 \cdot 4}=\frac{8}{12} \\
& \frac{3}{4}=\frac{3 \cdot 3}{4 \cdot 3}=\frac{9}{12}
\end{aligned}
$$

$$
\frac{2}{3}<\frac{3}{4}
$$

But, I could also think about how far each of these is from 1 !

Problem

- Arrange these fractions from smallest to largest without converting to equivalent fractions, decimals, drawing pictures. Use your fraction sense and reasoning tools:
$\frac{3}{4}$
$\frac{2}{5}$
$\frac{5}{6}$
- Is it possible to put a fraction between any two fractions on a number line?
- Why or why not?
- We say that the set of fractions is dense.

Addition of fractions

- Can you come up with a way of adding two fractions with equal denominators? Give an example and show on a model why your method works.
- What about adding fractions with different denominators?

Definition

- Let $\frac{a}{b}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ be any two fractions. Then

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Misconceptions

- Some students initially view the addition of fractions as adding the numerators and denominators as follows:

$$
\frac{3}{4}+\frac{1}{2}=\frac{4}{6}
$$

Using this example discuss why such method for addition is unreasonable.

Exercises:

$$
\begin{aligned}
& \frac{1}{8}+\frac{5}{8}= \\
& \frac{3}{7}+\frac{1}{3}= \\
& \frac{8}{9}+\frac{1}{12}+\frac{3}{16}= \\
& 2 \frac{2}{3}+1 \frac{1}{4}= \\
& \frac{2}{3}-\frac{1}{4}=
\end{aligned}
$$

$$
\frac{13}{18}-\frac{8}{27}=
$$

Properties?

- What properties of whole number addition do you think fraction addition has?
- Closure?
- Commutativity?
- Associativity?
- Additive identity?

Subtraction

$$
\begin{aligned}
& \frac{5}{8}-\frac{1}{8}= \\
& \frac{2}{3}-\frac{1}{4}=
\end{aligned}
$$

Definition

- Let $\frac{a}{b} \geq \frac{\mathrm{c}}{\mathrm{d}}$ be any two fractions. Then

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
$$

Mental math and properties of addition

$$
\left(\frac{3}{7}+\frac{1}{9}\right)+\frac{4}{7}=
$$

$$
\left(2 \frac{2}{5}+3 \frac{5}{8}\right)+\left(1 \frac{4}{5}+2 \frac{3}{8}\right)=
$$

$$
8 \frac{2}{7}-2 \frac{6}{7}=
$$

$$
4-2 \frac{3}{9}=
$$

Multiplication: a whole number times a fraction

- Use the repeated addition approach:

$$
3 \times \frac{1}{5}=\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5}
$$

Multiplication: a fraction times a whole number

- Repeated addition doesn't make sense for

$$
\frac{1}{3} \times 6
$$

- We can think of taking one third of 6 .

Multiplication: a fraction times a fraction

- Use the new approach!
$\frac{1}{5} \times \frac{3}{4}$ is one fifth of $\frac{3}{4}$

Picture $\frac{3}{4} \quad$

Take one fifth:

$$
\frac{1}{5} \times \frac{3}{4}=\frac{3}{20}
$$

Definition

- For any two fractions $\frac{a}{b}, \frac{c}{d}$ we define

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Question

- Is $2 \frac{1}{3} \cdot 3 \frac{1}{2}=6 \frac{1}{6} ? \quad$ Why or why not?

Properties of multiplication

- All the properties of whole number multiplication and
- Multiplicative inverse property:
- For every nonzero fraction $\frac{a}{b}$ there is a unique fraction $\frac{b}{a}$ such that

$$
\frac{a}{b} \cdot \frac{b}{a}=1
$$

Problem

- During one evening Kathleen devoted $2 / 5$ of her time to mathematics, $3 / 20$ of her time to Spanish, $1 / 3$ of her time to biology and the remaining 35 minutes to English. How much time did she spend studying her Spanish?

