New notions

Dimension, finiteness and other fun stuff

Question

How would you specify a position of a train traveling from Montreal to Toronto?

How would you specify a location of a point on a line?

1 dimension

If you need only one number to specify a position of a point in your space, then your space is 1-DIMENSIONAL.

Line is a 1-dimensional Euclidean space, E¹.

Question

How can you specify a position of a sailboat on an ocean?

How many numbers are needed to specify a position of a point on a piece of paper?

2 dimensions

If you need two numbers to specify location of a point in your space, then that space is 2-dimensional.

Plane is a 2-dimensional Euclidean space, E².

Question

How would you specify a position of an airplane in Earth's atmosphere?

How many numbers are needed to describe a point inside this room?

3 dimensions

If three numbers are needed to describe a position of a point, then the space in question is 3-dimensional.

Space, as we perceive it, is a 3-dimensional Euclidean space, E³.

Exercise

- What is the dimension of each of the following spaces?
 - circle
 - surface of the Moon
 - inside of the Moon
 - blackboard
 - milk in the milk carton
 - surface of your skin
 - time on a given day

Food for thought

What would Eⁿ be?

A Euclidean space in which we need n numbers to describe a position of a point.

- Can you see 4-dimensional space?
- Can a 2-dimensional space have volume?

Time for art

- Draw a 2-dimensional person.
 - How do they see?
 - How do they eat?
 - Where is their skin?
 - How do they eat and digest food?

More...

Draw a 2-dimensional planet.

Where on it do Flatlanders live?

Are the ones you drew earlier possible inhabitants of this planet?

1-dimensional planet

 Make a 1-dimensional planet with few linelanders.

Where is their skin? Their eyes?

Can they change neighbors?

Finite vs. Infinite

Space is FINITE if it has measurable length/area/volume/....

Space is INFINITE if has unlimited length/area/volume/...

Boundary

Boundary = Edge

Once you hit boundary you can not go past it, you have to turn around.

In dimension 1

	finite	infinite
With		
boundary		
boulldar y		
Without		
boundary		
- Countain y		

In dimension 2

	finite	infinite
With		
boundary		
boulldar y		
Without		
boundary		
- Countain y		

In dimension 3

	finite	infinite
With		
boundary		
boulldar y		
Without		
boundary		
- Countain y		

Story of Flatland

- Battle:
 - Plane vs. Sphere
- Imagine this:
 - You get on you little space ship, travel to a distant Galaxy, head towards the friendliest looking planet. It's EARTH!!!!