New spaces

What is $\boldsymbol{S}^{2} x \boldsymbol{S}^{l}$?

We live in a 3-dim'I manifold - we want to SEE 3-dim'I manifold

compare to

lives in a 2-dim'l manifold
wants to see 2-dim'l manifold

Remember: torus is a product of a circle and a circle

or

It is a cylinder whose top circle is glued to the bottom circle

Q: How can

imagine a cylinder (product of a circle and an interval)?

In the plane

He's got a cylinder:
Glue the inner circle to the outer circle

We've got a cylinder:
Glue the bottom circle to the top circle

In the plane

What is the shortest path between P and Q ?

What is the shortest path between P and Q ?

In each case along the circle between P and Q

To make this a geometric torus

that all the circles are of the same size.

What is $\mathbb{S}^{2} x \mathbb{S}^{l}$?

First make interval of spheres

What is $\boldsymbol{S}^{2} x \boldsymbol{S}^{l}$?

Glue inner sphere to outer sphere

Questions

- What did red interval become?
- What is the horizontal cross section?
- What are the other things you notice about this manifold?

Isotropic manifolds

- A manifold in which geometry is same in every direction is called isotropic.
- Is $\mathbf{S}^{2} \times \mathbf{S}^{1}$ isotropic?
- Is \mathbf{S}^{2} x \mathbf{S}^{1} homogeneous?

Exercises

- Are there any surfaces which are homogeneous, but not isotropic?
- What is a nonorientable 3-manifold that is a product and has the same local geometry as $\mathbf{S}^{2} \mathbf{x}$ \mathbf{S}^{1} ?
- How would you imagine a product of surface of genus 2 with a circle?

