Connected sums

And Products

$$
\mathrm{P}^{2} \# \mathrm{P}^{2}=\text { ??? }
$$

Take two copies of $\mathrm{P}^{2} \backslash \mathrm{~B}^{2}$ and glue along their boundaries. Make sure to remember what was the boundary of the disk you cut out from P^{2}.

Solution

$P^{2} \backslash B^{2}$

Solution

Klein bottle K²

How are these two spaces the same?

Big Theorem

Every surface is a connected sum of tori and/or projective planes.

All surfaces

\# of pp \# of tori	0	1	2	3
0	$\mathrm{~S}^{2}$	P^{2}	$\mathrm{P}^{2} \# \mathrm{P}^{2}$	$\mathrm{P}^{2} \# \mathrm{P}^{2} \# \mathrm{P}^{2}$
1	$\mathrm{~T}^{2}$	$\mathrm{~T}^{2} \# \mathrm{P}^{2}$	$\mathrm{~T}^{2} \# \mathrm{P}^{2} \# \mathrm{P}^{2}$	
2	$\mathrm{~T}^{2} \# \mathrm{~T}^{2}$	$\mathrm{~T}^{2} \# \mathrm{~T}^{2} \# \mathrm{P}^{2}$	\cdots	
3	$\mathrm{~T}^{2} \# \mathrm{~T}^{2} \# \mathrm{~T}^{2}$			\ldots

Exercise

- Find a surface on the list that is topologically equivalent to
- $\mathrm{K}^{2} \# \mathrm{P}^{2}$
- $K^{2} \# T^{2}$
- $\mathrm{K}^{2} \# \mathrm{~K}^{2}$

Question one should ask

- Does this list contain duplicates?
- Yes.

Investigation

I would like us to consider these two spaces

$$
T^{2} \# P^{2} \quad \text { and } \quad K^{2} \# P^{2}
$$

Study the pictures

Exercise

Show that

$\mathrm{T}^{2} \# \mathrm{P}^{2}=\mathrm{P}^{2} \# \mathrm{P}^{2} \# \mathrm{P}^{2}$

Exercise

- Why can our table from few slides ago be replaced by this table:

$$
S^{2}
$$

$$
\begin{array}{cc}
\mathrm{T}^{2} & \mathrm{P}^{2} \\
\mathrm{~T}^{2} \# \mathrm{~T}^{2} & \mathrm{P}^{2} \# \mathrm{P}^{2} \\
\mathrm{~T}^{2} \# \mathrm{~T}^{2} \# \mathrm{~T}^{2} & \mathrm{P}^{2} \# \mathrm{P}^{2} \# \mathrm{P}^{2} \\
\text { and so on }
\end{array}
$$

Exercise

- Match the entries from Column A with the same entries in Column B:

Column A

$$
\begin{aligned}
& \mathrm{S}^{2} \# \mathrm{~T}^{2} \\
& \mathrm{~K}^{2} \\
& \mathrm{~S}^{2} \# \mathrm{~S}^{2} \# \mathrm{~S}^{2} \\
& \mathrm{P}^{2} \# \mathrm{~T}^{2} \\
& \mathrm{~K}^{2} \# \mathrm{~T}^{2} \# \mathrm{P}^{2}
\end{aligned}
$$

Column B
$P^{2} \# P^{2}$
$K^{2} \# P^{2}$
$\mathrm{P}^{2} \# \mathrm{P}^{2} \# \mathrm{P}^{2} \# \mathrm{~K}^{2}$
$S^{2} \# S^{2}$
T^{2}

Exercise

- Which of the surfaces on the list are orientable and which are nonorientable?
- The connected sums of tori only are orientable
- The connected sums of pps only are nonorientable

Exercise

- How would you generalize the connected sum to 3-manifolds?
- Take out an open ball from both manifolds and glue them back up along their spherical boundary.

Question

- If you make a connected sum of two spaces, what is the dimension of the resulting space equal to?
- Same as the dimension of the spaces we started with.
- Could we form new manifolds from old, but so that the dimension changes?

Products

- Stack some circles!

Cylinder
-- interval of circles

Or maybe

- Stack some intervals!

Cylinder
-- circle of intervals

Cylinder

- Is a product of a circle and an interval $S^{1} \times I$
(circle cross interval)

In coordinates:

- Any point P on the cylinder can be given as (x, y), where x is a point on the circle and y is a point on the interval

Exercise

- Show on the gluing diagram of the cylinder its product structure.
- Mark how it is an interval of circles
- Mark how it is a circle of intervals

