Connected sums

And Products

$P^2 # P^2 = ???$

Take two copies of $P^2 \setminus B^2$ and glue along their boundaries. Make sure to remember what was the boundary of the disk you cut out from P^2 .

Solution

$P^2 \setminus B^2$

Solution

Klein bottle K²

How are these two spaces the same?

Big Theorem

Every surface is a connected sum of tori and/or projective planes.

All surfaces

# of pp	0	1	2	3
0	S ²	P^2	$P^2 \# P^2$	$P^2#P^2#P^2$
1	T ²	$T^{2} \# P^{2}$	T ² #P ² #P ²	
2	T ² # T ²	T ² #T ² #P ²		
3	$T^2 \# T^2 \# T^2$			

- Find a surface on the list that is topologically equivalent to
 - K² # P²
 - K² # T²
 - K² # K²

Question one should ask

Does this list contain duplicates?

• Yes.

Investigation

I would like us to consider these two spaces

T² # P²

and

$K^2 # P^2$

Study the pictures

Show that

$T^2 # P^2 = P^2 # P^2 # P^2$

 Why can our table from few slides ago be replaced by this table:

> S² T² P² T² # T² P² # P² T² # T² # T² P² # P² # P² and so on

Match the entries from Column A with the • same entries in Column B: Column A Column B $S^2 # T^2$ $P^{2} # P^{2}$ $K^{2} # P^{2}$ K^2 $S^2 # S^2 # S^2$ $P^2 # P^2 # P^2 # K^2$ $P^2 # T^2$ $S^2 # S^2$ **T**2 $K^{2} # T^{2} # P^{2}$

 Which of the surfaces on the list are orientable and which are nonorientable?

- The connected sums of tori only are orientable
- The connected sums of pps only are nonorientable

 How would you generalize the connected sum to 3-manifolds?

 Take out an open ball from both manifolds and glue them back up along their spherical boundary.

Question

- If you make a connected sum of two spaces, what is the dimension of the resulting space equal to?
 - Same as the dimension of the spaces we started with.
- Could we form new manifolds from old, but so that the dimension changes?

Products

Stack some circles!

Cylinder -- interval of circles

Or maybe

Stack some intervals!

Cylinder -- circle of intervals

Cylinder

Is a product of a circle and an interval

S¹ x I

(circle cross interval)

In coordinates:

Any point P on the cylinder can be given as (x,y), where x is a point on the circle and y is a point on the interval

Х

 Show on the gluing diagram of the cylinder its product structure.

- Mark how it is an interval of circles
- Mark how it is a circle of intervals