Flat Manifolds

Then the curved ones

Reminder

Fundamental domain

What is the tiling view of 3-torus?

Exercise 1

Take the handout marked 1 and color the cubes according to the prescription.

- What is the space you get?

What do you get by coloring \#2?

Exercise 2

Take an unmarked handout and color it in correctly if the the sides of the cube are identified as follows:

- Front to back with a side to side flip
- Top to bottom with a side to side flip
- Left to right normally

Homework for Wed.

Finish coloring handouts 3-6. If you are not given the gluing of the sides figure out what it is. In the handout 6 you are given the gluing, and you need to come up with the coloring.

Change

Not all 3-manifolds are made from cubes

Not all surfaces are made from squares.

Question

- What is:

Answer

Investigation

- How are the corners fit together in the hexagonal torus, and how in a flat torus?

In flat torus

All four corners meet at one vertex

Exercise

- How big is each angle in a regular

 n-gon?$$
(n-2) \pi
$$

n

In hexagonal torus

Two groups of three corners meet each meeting at a single vertex

Problem

How do corners meet in this surface?

Answer

- In the projective plane we have two groups of two corners and two corners meet at a point:

It can't have flat geometry

Flat vs. nonflat surfaces

If the angle sum of the corners that meet at a point is 360 degrees (and surface is flat away from the corners), then our surface has homogeneous flat geometry.
If the angle sum of the corners that meet at a point is smaller than 360 degrees, the surface can not have a homogeneous flat geometry.

Exercise

- Which of the following surfaces have cone points?

3 cone points

no cone points

opposite of cone points

More questions

Are any of the surfaces in the previous exercise orientable?

If these surfaces don't have a flat geometry, how will we find out what kind of geometry they do have?

