Geometries of 3-manifolds

Projective 3-space -- P³

 Having the definition of P² in mind, define P³.

What kind of geometry does it have?

Is it orientable?

Hyperbolic 3-space

Just "like" H², but one dimension bigger.

• Every two dimensional slice is H².

Differences?

Polyhedra play the role of polygons

•

Polyhedron

 three - dimensional figure made up of sides called faces (polygons). In a polyhedron, several polygonal faces meet at a corner (vertex).

3-manifolds

 are likely to be made from polyhedra by identifying their sides

- Gluing the sides of a cube in a certain way (which?) gives us a 3-torus.
- depending on how the corners of the polyhedron fit together we'll decide what type of geometry the 3-manifold has.

Comparison

 In a two manifold you wanted the corners of a polygon to fit into a circle around a vertex

 In a three manifold you'll want the corners of the polyhedron to fit into what shape around a vertex?

3-torus

How do corners of a cube fit around a vertex in a 3-torus?

Seifert-Weber space

Glue the opposite sides of the dodecahedron with a three-tenths of a clockwise turn.

Geometry of S-W space

- Turns out that all the corners fit around the same point
- Too much space to surround one tiny point
- Put the dodecahedron into the H³ and let it grow, until all the corners become small enough so that they can all fit around the vertex.

S-W space admits HYPERBOLIC GEOMETRY

Poincare dodecahedral space

The opposite faces are glued with a one tenth clockwise turn

Geometry of Poincare space

- Turns out that there are 5 groups of 4 corners that come together
- Not enough space to surround one point
- Put the dodecahedron into the S³ and let it grow, until all the corners become big enough.

Poincare space admits SPHERICAL GEOMETRY

Geometry?

Opposite sides are glued with one quarter clockwise rotation

Is that it?

Are those all geometries?

 Haven't we already seen one that's not either one of these three?

Next time....