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a b s t r a c t

The paper deals with the problem of reconstruction of microstructural information from
known effective complex permittivity of a composite material. A numerical method for
recovering geometric information from measurements of frequency dependent effective
complex permittivity is developed based on Stieltjes analytic representation of the effec-
tive permittivity tensor of a two-component mixture. We derive the Stieltjes representa-
tion for the effective permittivity of the medium using the eigenfunction expansion of
the solution of a boundary-value problem. The spectral function in this representation con-
tains all information about the microgeometry of the mixture. A discrete approximation of
the spectral measure is derived from a rational (Padé) approximation followed by its partial
fractions decomposition. The approach is based on the least squares minimization with
regularization constraints provided by the spectral properties of the operator. The method
is applied to calculation of volume fractions of the components in a mixture of two mate-
rials in a Bruggeman effective medium analytic model which has a continuous spectral
density and to analytical models of two-phase composites with coated cylindrical and
ellipsoidal inclusions. The numerical results of reconstruction of spectral measure for a
mixture of silver and silicon dioxide and a composite of magnesium and magnesium fluo-
ride show good agreement between theoretical and predicted values. The approach is
applicable to geological materials, biocomposites, porous media, etc.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The present paper deals with a problem of estimation of microstructural parameters in finely-structured heterogeneous
mixtures from measured effective properties of the medium. There are numerous examples of such media: porous rock sam-
ples, mixtures of air bubbles and liquid, water droplets in clouds, biological tissues, and artificial composites. In these het-
erogeneous materials the scale of microstructure is much smaller than the wavelength of the applied electromagnetic signal,
so that the measurements of the effective complex permittivity contain only ‘‘averaged” or ‘‘homogenized” information
about the structure.

The problem of extraction of structural information from measured transport properties of composite materials was first
introduced in [32] for estimating volume fractions of constituents in the composite. The approach is based on the analytic
Stieltjes integral representation of the complex effective permittivity �* of a mixture of two materials with complex permit-
tivity �1 and �2 developed in [3–5,24,34,35] in the course of constructing bounds for the effective complex permittivity �* of
composite materials.
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In [12], the problem of estimation of microstructural information from measured effective property was formulated as an
inverse problem for the spectral measure in the Stieltjes analytic representation. Uniqueness of reconstruction of the spectral
measure shown in [12] gives a basis for theory of inverse homogenization. Approaches to extraction of information about the
geometry of the composite are mainly based on reconstruction of the spectral function [12–17,37,44,45] or on estimation of
its first several moments [11,18,21,22,32,33,43]. It was shown that the problem of reconstruction of the spectral function is
ill-posed and requires regularization [12]. Several regularized algorithms were developed in [12–14,45]. Rational approxima-
tion of the spectral function was introduced in [45]. The explicit formulas for inverse bounds on the volume fraction of one
material in composite were derived in [43] for anisotropic composite materials (first order bounds) and in [11] for isotropic
composites (second order bounds). Developed methods were applied to measurements of various properties of composites,
such as multifrequency data for thin silver films [33], reflectivity measurements at different temperatures in [17]. Inverse
bounds [43] were applied to estimation of volume fraction of a polarizable component from multifrequency measurements
of the effective complex conductivity of a geophysical mixture. First and second order inverse bounds developed in [11] were
used to estimate sea ice brine volume from actual measurements of the effective complex permittivity of sea ice. Extension
to viscoelastic composites was developed in [9].

Here we consider a heterogeneous composite material which is formed of two homogeneous, isotropic phases with per-
mittivity �1 and �2, and assume that the composite has a well-defined three dimensional periodic structure. We assume that
the period of the microstructure of the mixture is small compared to the wavelength of applied electromagnetic fields. The
complex permittivity function is oscillating on a fine scale. For an electric field E applied to the composite, the effective per-
mittivity tensor �* is defined as a coefficient of proportionality between the averaged displacement < D > and averaged elec-
tric < E > fields: < D > = �*< E >.

In order to derive the analytic representation of the effective permittivity tensor �* we start with formulation of a problem
for the electric potential subject to appropriate Dirichlet and periodic boundary conditions. The weak solutions of the prob-
lem are used to derive a discrete approximation of the analytic Stieltjes representation based on the eigenfunction expan-
sions of the solution of the Dirichlet periodic boundary-value problem. The information about the microgeometry of the
mixture is contained in the spectral measure in this analytic representation

FðsÞ ¼ I3 �
��

�2
¼
Z 1

0

dlðzÞ
s� z

; s ¼ 1
1� �1=�2

; ð1Þ

where I3 denotes the 3 � 3 identity matrix. Here the positive measure l is the spectral measure of a self-adjoint operator Cv,
with v being the characteristic function of the domain occupied by the first material in the composite, and C =r(�D)�1(r�),
where (�D) is the Laplacian operator. The tensor function F(s) is analytic outside the [0,1]-interval in the complex s-plane.
The spectral representation (1) separates the dependence of the effective permittivity �* on the properties of the components
from the dependence on the micro-geometry through the complex variable s. It was shown in [12] that the problem of recon-
struction of the spectral measure l has unique solution if the values of �* are available on an arc in the complex s-plane.
However, from the computation point of view, the problem of reconstruction of the spectral measure is extremely ill-posed.
To obtain a stable reconstruction of the spectral measure, a new inversion method based on constrained rational approxi-
mation of the spectral function is developed in the present paper. The rational approximation of the spectral function is ob-
tained from the solution of a constrained minimization problem followed by the partial fractions decomposition. To
demonstrate the validity of the algorithm, the developed inversion method is applied to the reconstruction of spectral func-
tions of composites in several analytic examples corresponding to composites with different structures. The chosen analytic
models, have a continuous spectral density function as well as a combination of delta-functions. The results of numerical
experiments for estimating volume fractions of the constituents for metal–insulator composite materials from the recovered
spectral functions show good agreement between theoretical and predicted values.

The paper is organized as follows. Section 2 deals with an elliptic boundary-value problem for the electric potential with
Dirichlet boundary conditions on a part of the boundary and periodic conditions on the rest of the boundary. In Section 3, we
use the formulated solutions to the electric potential problem to derive a discrete approximation of the analytic Stieltjes rep-
resentation for the effective permittivity tensor of an anisotropic two-phase composite material based on eigenfunction
expansion of the solution. An inversion algorithm based on rational (Padé) approximation of the spectral function for given
effective permittivity measurements is presented in Section 4. In Section 5, we derive spectral representations for analytical
models of two-phase composite with cylindrical and ellipsoidal inclusions. We also used the three-dimensional Bruggeman
self-consistent effective medium analytic model which has a continuous spectral density, to numerically demonstrate the
efficiency of the method. Numerical experiments of reconstruction of the spectral function and estimation of the fractions
of components in a mixture of silver and silicon dioxide and in a composite of magnesium and magnesium fluoride are
shown in Section 6. The approach we present here, avoids specific assumptions about the microgeometry of the medium
and works efficiently for any two-phase composite material. It can be used to evaluate material (structure) properties from
measured effective complex permittivity or other properties of the composite.

2. Boundary value problem for the electric potential

We consider a heterogeneous composite medium occupying a cubic region X ¼ y ¼ ðy1; y2; y3Þ
>j 0 6 yi 6 L; i ¼ 1;2;3

� �
in R3. The medium is a binary mixture of materials consisting of two homogeneous, isotropic phases with permittivity �1 in
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the region X1, and �2 in the region X2, with X = X1 [X2. Let v be the characteristic function of the region X1 occupied by the
first component,

vðyÞ ¼
1; if y 2 X1;

0; otherwise;

�
ð2Þ

which is periodic on the boundary of X. The characteristic function of the domain occupied by the second component is
1 � v(y). The complex permittivity of the medium is defined as

�ðyÞ ¼ �1vðyÞ þ �2 1� vðyÞð Þ; y 2 X: ð3Þ

It is supposed that the wavelength of applied electromagnetic field is much larger than the scale of inhomogeneities of the
microstructure. If an electric field E is applied to the mixture, then in quasi-static approximation, low frequency Maxwell
equations governing the fields in the composite are:

r � D ¼ 0; r� E ¼ 0: ð4Þ

The constitutive relation between the displacement field D and electric field E is D(y) = �(y)E(y). Let the average electric field
be < E > = ei, and rw(i) be a perturbation of the constant field ei, so that E =rw(i) + ei. Here ei is the unit vector in the ith
direction (i = 1,2,3). Then the electric potential w(i) satisfies equation:

r � �1vðyÞ þ �2 1� vðyÞð Þð ÞðrwðiÞ þ eiÞ ¼ 0; y 2 X ð5Þ

for a periodic medium.
Let U = (u(1),u(2),u(3))> where ru(i) =rw(i) + ei (i = 1,2,3) and the symbol (�)> indicates a transposed matrix. Then the

effective permittivity tensor �* is defined as the coefficient of proportionality between the averaged fields

< D >¼ �� < E > ð6Þ

and �* can be written as

�� ¼ 1
V

Z
X
�$Udy;

1
V

Z
X
rUdy ¼ I3; ð7Þ

where I3 is the 3 � 3 identity matrix and V is the volume of X.
The aim of this section is to construct a solution to the problem for the electric potential u(i) (i = 1,2,3)

r � �ruðiÞ ¼ 0 ð8Þ

subject to the following non-homogeneous boundary conditions:

uðiÞ ¼
0; yi ¼ 0;
L; yi ¼ L;

�

uðiÞj@ðj�ÞX ¼ uðiÞj@ðjþÞX;
@uðiÞ

@n

����
@ðj�ÞX

þ @uðiÞ

@n

����
@ðjþÞX

¼ 0; ð9Þ

where @(j�)Xk@(j+)X (i = 1,2,3; j – i). Fig. 1 shows the geometry of a typical cell X with Dirichlet boundary conditions in y3-
direction and periodic boundary conditions in y1-and y2-directions for the electric potential u(3) in the composite with a peri-
odic structure.

In order to obtain the solution of the Dirichlet and periodic boundary value problem (8) and (9), we first analyze the solv-
ability of the homogeneous boundary value problem

r � �ðrwðiÞ þ eiÞ ¼ 0; i ¼ 1;2;3; ð10Þ
wðiÞjyi¼0 ¼ wðiÞjyi¼L ¼ 0;

wðiÞj@ðj�ÞX ¼ wðiÞj@ðjþÞX;
@wðiÞ

@n

�����
@ðj�ÞX

þ @w
ðiÞ

@n

�����
@ðjþÞX

¼ 0; j – i; ð11Þ

where the part of the boundary @(j�)X is parallel to @(j+)X. From (10) and (11), it can be seen that the electric potential
function

uðiÞ ¼ yi þ wðiÞ ði ¼ 1;2;3Þ ð12Þ

solves the boundary value problem (8) and (9).
Introducing the material parameter s,

s ¼ �2

�2 � �1
ð13Þ

and representing the scalar complex permittivity �(y) as
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�ðyÞ ¼ �1vðyÞ þ �2 1� vðyÞð Þ ¼ �2 1� 1
s
vðyÞ

� �
; y 2 X; ð14Þ

the boundary value problem (10) and (11) can be rewritten as

sDwðiÞ ¼ r � v rwðiÞ þ ei

� 	
ð15Þ

with boundary conditions (11). We introduce the Green’s function Gi(y,y0) for the Laplace’s problem [1]

DGiðy; y0Þ ¼ �dðy � y0Þ þ 1
V
;

Gijyi¼0 ¼ Gijyi¼L ¼ 0;

Gij@ðj�ÞX ¼ Gij@ðjþÞX;
@Gi

@n

����
@ðj�ÞX

þ @Gi

@n

����
@ðjþÞX

¼ 0; ð16Þ

where d(y) is the Dirac delta function and @(j�)Xk@ (j+)X (i = 1,2,3; j – i).
The problems (16) for different i, i = 1,2,3, differ only by coordinate rotations; since the Laplace operator is invariant to

rotation of coordinates, the Green’s functions Gi(y,y0) for different i could be obtained by rotation. We use the Green’s second
identity for the function w(i):Z

X
wðiÞDGi � GiDwðiÞ
� 	

dy ¼
Z
@X

wðiÞ
@Gi

@n
� Gi

@wðiÞ

@n

 !
ds: ð17Þ

It can be seen that the boundary integral on the right hand side of (17) vanishes due to the boundary conditions for functions
w(i) and Gi(y,y0) on @X. Using (15) and (16) in the left hand side of (17), we bring Eq. (17) to the form:

�
Z

X
wðiÞdðy � y0Þdy0 þ 1

V

Z
X

wðiÞdy0 ¼ 1
s

Z
X

Giðy; y0Þr � vðrwðiÞ þ eiÞdy0: ð18Þ

Thus, (18) implies that the solution of the boundary value problem (10) and (11) or (15) and (11) is

wðiÞ ¼ �1
s

Z
X

Giðy; y0Þr � vðrwðiÞ þ eiÞdy0 ¼ �1
s

Z
X

Giðy; y0Þr � vrðwðiÞ þ y0iÞdy0 ¼ �1
s

Z
X

Giðy; y0Þr � vruðiÞdy0: ð19Þ

Using Green’s first identity and introducing r0 to denote the gradient with respect to y0;r0 ¼ ry0 , we write w(i) of (19) as

wðiÞ ¼ �1
s

Z
@X

vGiðy; y0Þr0uðiÞ � ndsþ 1
s

Z
X
vr0Giðy; y0Þ � r0uðiÞdy0:

Noticing the periodicity of v and boundary conditions of Gi(y,y0) and u(i) on @X, we obtain

Fig. 1. Geometry of a periodic cell for the electric potential u(3).
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wðiÞ ¼ 1
s

Z
X
vr0Giðy; y0Þ � r0uðiÞdy0 ¼ 1

s
Ĉi

vuðiÞ;

where the linear integral operator Ĉi
v is defined as

Ĉi
vuðiÞ ¼

Z
X
vr0Giðy; y0Þ � r0uðiÞdy0: ð20Þ

From the definition of the operator Ĉi
v, the solution u(i) of the boundary value problem (8) and (9) is given by

uðiÞ ¼ yi þ wðiÞ ¼ yi þ
1
s
Ĉi

vuðiÞ ði ¼ 1;2;3Þ: ð21Þ

The solution of electric potential u(i) corresponding to the boundary value problem (8) and (9) can be obtained in terms of Ĉi
v

and yi using Eq. (21) so that

uðiÞ ¼ s sI3 � Ĉi
v

� 	�1
yi ði ¼ 1;2;3Þ: ð22Þ

3. Spectral representation for the effective permittivity

In this section, we use solution of the local electric potential problem constructed in the previous section to derive the
spectral representation for the effective complex permittivity of a two-component medium and to study fundamental prop-
erties of this representation.

Remark 1. Generally, the operator Ĉi
v can have continuous spectrum [30]. To derive a representation with continuous

spectrum we could use spectral theorem as it was done in [12,24] for composites with random microgeometry. However,
since every measure l(z) in (1) can be represented as a weak* limit of a sequence of linear combinations of discrete point
measures [29,39], we restrict ourselves by considering the case when Ĉi

v has a discrete spectrum. In this case, the set of
eigenvalues is a countable set, and the Stieltjes integral representation (1) reduces to the infinite sum.

We first consider a linear homogeneous boundary-value problem for electric potential w(i)(i = 1,2,3) in the domain X

r � �rwðiÞ ¼ 0 ð23Þ

with the homogeneous Dirichlet and periodic boundary conditions given in (11). Using the material parameter s introduced
in (13) and the expression (14) for the scalar complex permittivity �, it can be shown that the electric potential w(i) (i = 1,2,3)
satisfies the following equation

sDwðiÞ ¼ r � vrwðiÞ ð24Þ

with the same homogeneous Dirichlet and periodic boundary conditions (11). The Green’s functions Gi(y,y0) for (24) with
periodic boundary conditions (11) solve the problem (16). Using Green’s first and second identities, similar to the derivation
of (18) through (20), we obtain the homogeneous integral equation

Ĉi
vw
ðiÞ ¼ sðiÞwðiÞ ði ¼ 1;2;3Þ: ð25Þ

This is an eigenvalue problem with eigenvalue s(i) corresponding to the eigenfunction w(i) for the linear integral operator Ĉi
v.

For each i, solution to the problem is given by a set of eigenvalues and eigenfunctions sðiÞn ;w
ðiÞ
n .

We define the space of functions HðiÞ1 ðXÞði ¼ 1;2;3Þ as follows. Let Hv;ðiÞ
1 ðXÞ be

Hv;ðiÞ
1 ðXÞ ¼ v ðiÞjv ðiÞj@ðj�ÞX ¼ v ðiÞj@ðjþÞX; j – i; i; j ¼ 1;2;3; v ðiÞ 2 H1ðXÞ

n o
; ð26Þ

where the Sobolev space H1(X) is defined by

H1ðXÞ ¼ v jv 2 L2ðXÞ; @v
@yk
2 L2ðXÞ; k ¼ 1;2;3

� 

ð27Þ

and let us introduce scalar inner product between two electric potential functions n; f 2 Hv;ðiÞ
1 ðXÞ

hn; fiHv
1
¼
Z

X
vrn� � rfdy: ð28Þ

Here the derivatives are taken in the sense of distributions. We consider the quotient space HðiÞ1 ¼ Hv;ðiÞ
1 =SðiÞ1

n o
where

SðiÞ1 ¼ fv jhv ;viHv
1
¼ 0;v 2 Hv;ðiÞ

1 ðXÞg with respect to the introduced inner product. With this definition, we can show that
the operator Ĉi

v is a self-adjoint, non-negative, bounded linear operator. The properties of Ĉi
v are stated in the following The-

orem 1 through Theorem 4. The detailed proofs of Theorems 1–4 are given in Appendices A, B, C, D.

Theorem 1. The operator Ĉi
v is a linear self-adjoint operator mapping from HðiÞ1 to HðiÞ1 .

5394 D. Zhang, E. Cherkaev / Journal of Computational Physics 228 (2009) 5390–5409
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In order to show that the integral operator Ĉi
v is non-negative and bounded, we consider the eigenvalue problem

Ĉi
vw
ðiÞ
n ¼ sðiÞn wðiÞn ; ð29Þ

where wðiÞn is the solution to the boundary value problem (24) with boundary conditions (11). The eigenvalues sðiÞn have the
following properties.

Theorem 2. All the eigenvalues sðiÞn of the eigenvalue problem (29) are real and lie in the unit interval in the complex s-plane,
i.e.,

0 6 sðiÞn < 1: ð30Þ

Theorem 3. Eigenfunctions corresponding to different eigenvalues of Ĉi
vði ¼ 1;2;3Þ are orthogonal with respect to the inner prod-

uct (28).

We further note that since we consider a case of discrete spectrum (see Remark 1), we can assume that the eigenfunctions
wðiÞn of (29) corresponding to the eigenvalues sðiÞn (i = 1,2,3) form a complete set orthogonal with respect to the scalar inner
product (28). Cases were considered in [6–8] as well as Section 18.3 in [36], when the conditions for a complete set of eigen-
functions wn with real eigenvalues sn, were satisfied. The eigenfunctions fwðiÞn g

1
n¼1ði ¼ 1;2;3Þ corresponding to the eigen-

values sðiÞn can be chosen to be orthonormal.

Theorem 4. The linear integral operator Ĉi
vði ¼ 1;2;3Þ is non-negative and bounded in HðiÞ1 .

To derive the analytical representation for the effective property �* in the complex s-plane, we consider a tensor function
F(s) defined as

FðsÞ ¼ I3 �
��

�2
¼ I3 �

1
�2V

Z
X
�rUdy:

Using (14) and
R

X½rU�ijdy ¼ Vdijði; j ¼ 1;2;3Þ, the tensor F(s) is rewritten as

FðsÞ ¼ 1
sV

Z
X
vrUdy: ð31Þ

Suppose that the directions of the applied electric fields E ¼ $U coincide with the directions of the principal axes of effective
permittivity tensor �* and the characteristic function v(y) of the first material in the composite is axisymmetric with respect
to the spatial coordinates

vðy01; y02; y03Þ ¼ vð�y01; y
0
2; y

0
3Þ ¼ vðy01;�y02; y

0
3Þ ¼ vðy01; y02;�y03Þ; ð32Þ

where

y01 ¼ y1 �
L
2
; y02 ¼ y2 �

L
2
; y03 ¼ y3 �

L
2
; y ¼ ðy1; y2; y3Þ

> 2 X: ð33Þ

Then the tensor F(s) has diagonal form

FðsÞ ¼ 1
sV

Z
X
v @uð1Þ

@y1
;
@uð2Þ

@y2
;
@uð3Þ

@y3

� �
I3dy: ð34Þ

Let f be the volume fraction of subdomains occupied by the first material and V be the total volume of the composite.

Theorem 5. Assume that wðiÞn ðn ¼ 1;2; . . .Þ form a complete set of orthonormal eigenfunctions with eigenvalues sðiÞn of the operator
Ĉi

v; i ¼ 1;2;3. The eigenvalues of the tensor F(s) = diag(F11,F22,F33) have the spectral representation

FiiðsÞ ¼
X

n

AðiÞn

s� sðiÞn

; ð35Þ

where sðiÞn is the n-th simple eigenvalue. The residues AðiÞn ,

AðiÞn ¼ hyi;w
ðiÞ
n iHv

1

��� ���2�V ð36Þ

satisfy the sum rule:X
n

AðiÞn ¼ f ð37Þ

and the following constraints:

0 6 AðiÞn < 1; 0 <
X

n

AðiÞn < 1: ð38Þ

D. Zhang, E. Cherkaev / Journal of Computational Physics 228 (2009) 5390–5409 5395
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Proof. See Appendix E. h

The result of Theorem 5 is similar to Bergman’s result for the spectral function of isotropic two-component composite
[3,4,8].

Remark 2. In general, if the directions of applied electric fields E ¼ $U do not coincide with the directions of the principal
axes of effective permittivity tensor �*, the effective permittivity �* is not a diagonal tensor,

�� ¼ ½�ij�3�3 ¼
1
V

Z
X
�rUdy: ð39Þ

In this case, F(s) is a tensor function of the form

FðsÞ ¼ 1
sV

Z
X
v

@uð1Þ
@y1

@uð2Þ
@y1

@uð3Þ
@y1

@uð1Þ
@y2

@uð2Þ
@y2

@uð3Þ
@y2

@uð1Þ
@y3

@uð2Þ
@y3

@uð3Þ
@y3

0
BBB@

1
CCCAdy: ð40Þ

Remark 3. We present an alternative proof that the eigenvalues sðiÞn of the eigenvalue problem (29) are real and bounded
between zero and one. The eigenvalue sb of the elliptic problem

r � ð�rwbÞ ¼ 0() sbDwb ¼ r � ðvrwbÞ ð41Þ

with homogeneous boundary conditions (11) corresponds to the zero eigenvalue kb = �2lb, �2 – 0, of the eigenvalue problem

r � ð�rubÞ ¼ kbub () sbDub ¼ r � ðvrubÞ þ lbsbub ð42Þ

subject to the homogeneous boundary conditions (11). Multiplying the differential Eq. (42) by the eigenfunction wb and inte-
grating over the domain X, we have

sb

Z
X

wbr � ðrubÞdy ¼
Z

X
wbr � ðvrubÞdy þ lbsb

Z
X

wbubdy:

Using integration by parts, this gives

sb

Z
@X

wb

@ub

@n
ds�

Z
X
rwb � rubdy

� �
¼
Z
@X

vwb

@ub

@n
ds�

Z
X
vrwb � rubdy þ lbsb

Z
X

wbubdy: ð43Þ

Accounting for the boundary conditions (11), we obtain the expression of lb in terms of sb as

lb ¼
R

X vrwb � rubdy
sb

R
X wbubdy

�
R

Xrwb � rubdyR
X wbubdy

: ð44Þ

Define the real and imaginary parts of eigenvalues lb and sb as:

lRb ¼ ReðlbÞ; lI
b ¼ ImðlbÞ; sR

b ¼ ReðsbÞ; sI
b ¼ ImðsbÞ:

It follows from (44) that

lRb ¼
sR
b

R
X vjrubj2dy

jsbj2
R

X jubj2dy
�
R

X jrubj2dyR
X jubj2dy

; lI
b ¼ �

sI
b

R
X vjrubj2dy

jsbj2
R

X jubj2dy
: ð45Þ

Therefore, the zero eigenvalue (i.e., lR
b ¼ l I

b ¼ 0) of the problem (42) implies

sI
b ¼ ImðsbÞ ¼ 0; 0 6 sR

b ¼ ReðsbÞ ¼
R

X vjrubj2dyR
X jrubj2dy

< 1: ð46Þ

4. Rational approximation and inversion method

In this section, we propose a new inversion algorithm for reconstruction of the spectral function from known measured
data. We solve the inverse problem by constructing a constrained partial fraction decomposition of rational (Padé) approx-
imation calculated using measured values of the effective complex permittivity. The constraints for the poles and residues of
the partial fractions are given in (30) and (38). The least squares approximation of the function F(s) by a rational function was
used to construct the Padé approximation.

To derive the numerical scheme of the approximation of the spectral function, we focus on one diagonal component
F(s) = Fii(s) of the tensor F(s) for simplicity. We note that the function F(s) has a discrete representation in the partial fraction
form
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FðsÞ ¼
X

n

An

s� sn
ð47Þ

as described in previous section after eliminating the superscript i in (35). Here sn is the n-th simple pole on the unit interval
with positive residue An. The right hand side of (47) can be approximated by an appropriate rational functionX

n

An

s� sn
’ aðsÞ

bðsÞ ; ð48Þ

where the degree of the polynomial a(s) is lower than the degree of the polynomial b(s). We consider the Padé approxima-
tion of F(s) (see [2,10])

FðsÞ ’ F ½p;q�ðsÞ ¼
aðsÞ
bðsÞ ¼

a0 þ a1sþ a2s2 þ � � � þ apsp

b0 þ b1sþ b2s2 þ � � � þ bqsq
; ð49Þ

where ai and bj are the coefficients of two real polynomials a(s) and b(s) of orders p and q, respectively. Let a(s) and b1(s) be
real polynomials of degree p and q � 1 respectively, with p 6 q � 1. It should be noted that if the pole s1 is not a zero of b1(s),
then there exists a real polynomial a1(s) with degree p1 < q � 1 and a number A1 such that

aðsÞ
bðsÞ ¼

aðsÞ
b1ðsÞðs� s1Þ

¼ a1ðsÞ
b1ðsÞ

þ A1

s� s1
: ð50Þ

Since all poles sn(n = 1,2, . . . ,q) of denominator b(s) in (49) are simple, by the fundamental theorem of algebra, it is clear that
the partial fraction decomposition of the rational function a(s)/b(s) holds:

aðsÞ
bðsÞ ¼

aðsÞ
bqðs� s1Þðs� s2Þ � � � ðs� sqÞ

¼
Xq

n¼1

An

s� sn
ðbq – 0Þ: ð51Þ

We assume that the function F(s) has at least one pole, and use a nonstandard normalization of the polynomial coefficient
b1 = 1 in the denominator b(s). Given measured data pairs (zk, fk) (k = 1,2, . . . ,N), with fk being the measured value of the func-
tion F(s) at the sample point zk, fk = F(zk), and with N being the total number of data points, Eq. (49) can be written as

a0 þ a1zk þ a2z2
k þ � � � þ apzp

k

b0 þ zk þ b2z2
k þ � � � þ bqzq

k

¼ fk; ð52Þ

where ai(i = 0, . . . ,p), bj(j = 0, . . . ,q, j – 1) are required unknown coefficients. Eq. (52) can be rewritten as

a0 þ a1zk þ � � � þ apzp
k � b0fk � b2fkz2

k � � � � � bqfkzq
k ¼ fkzk ðk ¼ 1;2; . . . ;NÞ: ð53Þ

Therefore, the unknown real coefficients ai(i = 0, . . . ,p), bj(j = 0, . . . ,q, j – 1) of the ratio a(s)/b(s) are determined by solving the
following linear system of equations

Sc ¼ d ð54Þ

where

S ¼

1 z1 z2
1 � � � zp

1 �f1 �f1z2
1 �f1z3

1 � � � �f1zq
1

1 z2 z2
2 � � � zp

2 �f2 �f2z2
2 �f2z3

2 � � � �f2zq
2

1 z3 z2
3 � � � zp

3 �f3 �f3z2
3 �f3z3

3 � � � �f3zq
3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
1 zN z2

N � � � zp
N �fN �fNz2

N �fNz3
N � � � �fNzq

N

0
BBBBBB@

1
CCCCCCA
;

c ¼ a0; a1; . . . ; ap; b0; b2; b3; . . . ; bq
� >

; d ¼ ½f1z1; f2z2; . . . ; fNzN �> ð55Þ

and the symbol [�]> indicates a transposed matrix. It should be noted that in order to uniquely determine the coefficients
ai(i = 0, . . . ,p), bj (j = 0, . . . ,q, j – 1), the total number of the measurements must be greater or equal to the number of coeffi-
cients, i.e., N > p + q + 1. The reconstruction problem of determining vector of real coefficients c in (54) is ill-posed and re-
quires regularization to develop a stable numerical algorithm. In this study we use the constrained minimization method
with constraints described above.

To derive solution to the problem (54), we use complex matrices S = Sr + iSi and d = dr + idi where subindices r and i indi-
cate the real and imaginary parts of the matrices. To solve the problem and obtain a vector of the real Padé coefficients c we
formulate the following least squares problem

min
c
kSc� dk2
n o

() min
c
kSrc� drk2 þ kSic� dik2
n o

: ð56Þ

Here k � k denotes the usual Euclidean norm. The solution of the minimization problem is ill-posed. A widely used approach
to regularize the problem is to introduce a penalization term and rewrite the minimization problem (56) as follows [42]

min
c
kSrc� drk2 þ kSic� dik2 þ k2kck2
n o

: ð57Þ

D. Zhang, E. Cherkaev / Journal of Computational Physics 228 (2009) 5390–5409 5397



Author's personal copy

Here k is a regularization parameter. The choice of the regularization parameter k has an important role in solving the reg-
ularized problem, since in the dual minimization problem, k is the Lagrange multiplier by the constraint for the norm of the
solution. However, the problem (57) is still ill-posed due to the data noise present in the elements of the matrix S as well as
in the right-hand side vector d. This leads to the problem in which both the coefficient matrix and the right-hand side vector
are not precisely known. The total least squares method could be used for solution of this kind of linear least squares prob-
lems [19,25]. Application of this method will be discussed elsewhere. Here, we use inequalities (30) and (38) for the residues
and poles of the function F(s) to impose constraints for the set of minimizers of the problem. The regularized solution c for
the problem (54) is obtained as a solution of the following constrained least squares minimization problem

min
c

kSrc� drk2 þ kSic� dik2 þ k2kck2
n o

s:t: 0 6 An < 1; 0 6 sn < 1; 0 <
X

n

AðiÞn < 1; n ¼ 1;2; . . . ; q: ð58Þ

Here parameters An and sn are residues and poles of the partial fractions decomposition (51) of the reconstructed Padé
approximation of the spectral function. The corresponding Euler equation is

c ¼ S>r Sr þ S>i Si þ kIpþqþ1
� ��1

S>r dr þ S>i di
� �

; ð59Þ

where Ip+q+1 denotes the (p + q + 1) � (p + q + 1) identity matrix. After reconstruction of the coefficients ai (i = 0, . . . ,p), bj

(j = 0, . . . ,q, j – 1) of Padé approximation, its decomposition into partial fractions (51), gives an approximation of the spectral
function. Then the volume fraction of the first material in the composite can be calculated using formula (37).

5. Spectral representation for analytical models of composites

In this section, we consider isotropic and anisotropic binary composite materials with specific micro-geometries charac-
terized by cylindrical and ellipsoidal inclusions as well as 3D Bruggeman’s symmetric effective-medium composites. We de-
rive analytic representation of the spectral function for such composites to use in numerical simulations.

5.1. Isotropic ellipsoidal microgeometries

Let us consider a microgeometry formed by ellipsoidal inclusions of volume fraction f with a dielectric permittivity �1 im-
mersed in a much larger homogeneous background with a dielectric constant �2. The effective permittivity for a three-
dimensional isotropic two-component mixture with randomly oriented ellipsoidal inclusions with semiaxes ax,ay and az

(see [40]) is

�� ¼ �2 þ �2
f
3

X
j¼x;y;z

�1 � �2

�2 þ Njð�1 � �2Þ

 !
1� f

3

X
j¼x;y;z

Njð�1 � �2Þ
�2 þ Njð�1 � �2Þ

 !�1

; ð60Þ

where Nx, Ny and Nz are depolarization factors of the three orthogonal directions, respectively, satisfying Nx + Ny + Nz = 1. The
depolarization factor Nx in the x-direction is given as

Nx ¼
axayaz

2

Z 1

0

dt

ðt þ a2
x Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt þ a2

x Þðt þ a2
yÞðt þ a2

z Þ
q : ð61Þ

The other two depolarization factors, Ny and Nz, are obtained by interchanging ay and ax, and az and ax in the above integral.
When three depolarization factors are equal: Nx = Ny = Nz = 1/3, (60) is reduced to the well-known Maxwell Garnett (MG)

formula [31]

��MG ¼ �2 þ 3f�2
�1 � �2

�1 þ 2�2 � f ð�1 � �2Þ
: ð62Þ

The MG formula (62) predicts the effective permittivity of the mixture with inclusions of spherical shape, which is equivalent
to the Hashin–Shtrikman coated spheres (CS) model [26]. We consider two models of composites: mixtures with randomly
oriented prolate spheroids (PS) and with randomly oriented oblate spheroids (OS). In these cases, the depolarization factors
can be evaluated explicitly. For the prolate spheroids (ax > ay = az), (61) gives

Nx ¼
1� e2

2e3 ln
1þ e
1� e

� 2e
� �

; Ny ¼ Nz ¼
1
2
ð1� NxÞ; ð63Þ

where e is the eccentricity, e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

y=a2
x

q
. For oblate spheroids (ax = ay > az),

Nz ¼
1þ e2

e3 e� tan�1 e
� �

; Nx ¼ Ny ¼
1
2
ð1� NzÞ; ð64Þ

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x=a2
z � 1

p
.
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We use these formulas to find expressions for corresponding spectral functions. The function F(s) corresponding to the
effective permittivity defined by the MG formula (62) can be written as

FMGðsÞ ¼ 1� �
�
MG

�2
¼ f

s� ð1� f Þ=3
: ð65Þ

In the complex s-plane, this gives a pole at the location s = (1 � f)/3 for the spectral function corresponding to FMG(s). The
residue is the volume fraction f of the inclusion material.

The functions FPS(s) and FOS(s) corresponding to mixtures with prolate–spheroidal (PS) inclusions (63) and with oblate–
spheroidal (OS) inclusions (64), have a similar two-term simple partial fractions form

FPSðOSÞðsÞ ¼ 1�
��PSðOSÞ

�2
¼ A1

s� s1
þ A2

s� s2
: ð66Þ

Here the parameters s1, s2 are the following:

s1 ¼
1
2

Nx þ Nz �
f
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nx þ Nz �

f
3

� �2

� 4ð1� f ÞNxNz

s0
@

1
A;

s2 ¼
1
2

Nx þ Nz �
f
3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nx þ Nz �

f
3

� �2

� 4ð1� f ÞNxNz

s0
@

1
A; ð67Þ

A1 ¼ APS
1 ;A2 ¼ APS

2 for the prolate spheroid model (PS), and A1 ¼ AOS
1 ;A2 ¼ AOS

2 for a mixture with oblate spheroidal (OS) inclu-
sions. These parameters are given as

APS
1 ¼ f

s1 � ð2Nx þ NzÞ=3
s1 � s2

� �
; APS

2 ¼ f
s2 � ð2Nx þ NzÞ=3

s2 � s1

� �
;

AOS
1 ¼ f

s1 � ðNx þ 2NzÞ=3
s1 � s2

� �
; AOS

2 ¼ f
s2 � ðNx þ 2NzÞ=3

s2 � s1

� �
: ð68Þ

It is easy to check that the sum rule (37) for the residues in (65) and (66) is satisfied.

5.2. Anisotropic composites with coated elliptical cylinders

As an example of an anisotropic material we consider a two-component mixture with elliptical inclusions of a core phase
of an isotropic permittivity �1 surrounded by a coating of second phase with an isotropic permittivity �2. The ellipsoid has
confocal elliptical interior and exterior surfaces, parameterized in ellipsoidal coordinates by q = qc and q = qe. Let f < 1 be the
volume fraction of core phase inside the ellipse with surface qc and 1 � f be the volume fraction of the coating phase between
ellipse with the surface qc and inside the larger ellipse with surface qe. The effective permittivity tensor �� ¼ diagð��x; ��y; ��zÞ
for such a binary mixture with coated ellipsoid inclusions is determined by the formula (see [36]):

f�2ð�� � �2I3Þ�1 ¼ �2ð�1 � �2Þ�1I3 þ ð1� f ÞM; ð69Þ

where

M ¼ ðDc � f DeÞ=ð1� f Þ; Dc ¼ ðdc1 ;dc2 ;dc3 ÞI3; De ¼ ðde1 ; de2 ;de3 ÞI3: ð70Þ

Here Dc and De are the depolarization tensors of the core and exterior elliptical surfaces of the confocal coated ellipsoid. The
parameter dcj

¼ djðc1; c2; c3Þ and dej
¼ djðe1; e2; e3Þ (j = 1,2,3) are the depolarization factors of the three orthogonal directions

with cj and ej (j = 1,2,3) representing the semi-axis lengths of the core and exterior surfaces of the coated ellipsoid. The
expression of these depolarization factors are given in (61).

Let l1, l2 and l3 denote the semiaxis lengths of the core and exterior ellipsoid in the direction of j = x, y or z, respectively. In
some cases the depolarization factors can be evaluated explicitly. In particular, in the limit as l3 approaches to1, with l1 and
l2 being held fixed, the depolarization factors d1, d2 and d3 reduce to

d1 ¼ l2=ðl1 þ l2Þ; d2 ¼ l1=ðl1 þ l2Þ; d3 ¼ 0: ð71Þ

Substituting (71) into (70), the tensor matrix M in (70) becomes

M ¼ 1
c1e1 þ c2e2

ðc1e1; c2e2;0ÞI3; ð72Þ

so that the effective permittivity tensor �� ¼ diagð��x; ��y; ��zÞ for a binary mixture with inclusions of confocal coated elliptical
cylinder shape has the form of
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��x ¼ �2 þ �2
f ðc1e1 þ c2e2Þð�1 � �2Þ

ðc1e1 þ c2e2Þ�2 þ ð1� f Þc1e1ð�1 � �2Þ
;

��y ¼ �2 þ �2
f ðc1e1 þ c2e2Þð�1 � �2Þ

ðc1e1 þ c2e2Þ�2 þ ð1� f Þc2e2ð�1 � �2Þ
;

��z ¼ �2 þ f ð�1 � �2Þ: ð73Þ

The analytical expression of the corresponding tensor function F(s) is given as

FðsÞ ¼ I3 �
��

�2
¼ ðFx; Fy; FzÞI3 ¼

f
s� sx

;
f

s� sy
;

f
s� sz

� �
I3; ð74Þ

where the poles sx, sy, sz of the x-, y- and z-components of the density of the spectral measure in the complex s-plane are

sx ¼ ð1� f Þc1e1

c1e1 þ c2e2
; sy ¼ ð1� f Þc2e2

c1e1 þ c2e2
; sz ¼ 0 ð75Þ

and the residues are given by the volume fraction f of the inclusion phase. Fig. 2 shows the geometric representation of a
cross-section of a two-component mixture with inclusions shaped as coated elliptical cylinders (left) and as coated spheres
(right).

5.3. 3D Bruggeman effective-medium approximation model

The Bruggeman effective-medium approximation is one of the mixing rules that is widely used in electromagnetics
[7,20,23,38,40,41]. It assumes a model of inhomogeneous material composed of two types of approximately spherical grains
with permittivity �1 and �2. The derivation of the effective permittivity �* is based on the assumption of self-consistency
which allows to take the permittivity of the matrix material in which the grains are embedded, equal to �*, and use first order
approximation for dilute composite to calculate the resulting effective property. This model is also called self-consistent
effective medium approximation (EMA) [36,40].

The function FEMA(s) for the 3D Bruggeman effective permittivity model has the following form as a function of parameter
s = �2/(�2 � �1) on the complex plane [28]:

FEMAðsÞ ¼
1
4s

3sþ 3f � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9s2 � 6ð1þ f Þsþ ð1� 3f Þ2

q� 

: ð76Þ

Here f is the volume fraction of sub-domains occupied by the first material with permittivity �1. Let l(x) and m(x) represent
the spectral measure and spectral density functions, respectively. The spectral function FEMA(s) in (76) has an analytic Stielt-
jes integral representation on the complex plane of variable s, s = x + iy, for low volume fraction f 6 1/3 the representation
has the following form:

FEMAðsÞ ¼ 1� �
�

�2
¼
Z 1

0

dlðxÞ
s� x

¼
Z 1

0

mðxÞdx
s� x

: ð77Þ

The spectral representation for the three-dimensional Bruggeman self-consistent effective medium analytic model has a
continuous spectral density function m(x). The function m(x) is a real non-negative function which is defined in the unit
interval x 2 [0,1] by the Stieltjes inversion formula:

Fig. 2. Cross-sections of a binary mixture with inclusions of coated elliptical cylinders (left) and with coated spheres (right). The illustration shown here is
incomplete. The coated elliptical cylinders and coated spheres should fill all space with periodicity on the boundary of domain.
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mðxÞ ¼ d
dx

lðxÞ ¼ � 1
p lim

y!0þ
ImFEMAðxþ iyÞ: ð78Þ

The representation (77) was used to evaluate optical properties of cermets (ceramic–metal mixtures) for f 6 1/3 in [28],
where the spectral density function m(x) was given as

mðxÞ ¼
1

4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9x2 þ 6ð1þ f Þx� ð1� 3f Þ2

q
for x1 < x < x2;

0 otherwise;

(
ð79Þ

where

x1;2 ¼
1
3

1þ f � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ð1� f Þ

q� �
; 0 6 x1 < x2 < 1: ð80Þ

The function m(x) satisfies the sum rule:Z x2

x1

mðxÞdx ¼
Z x2

x1

dlðxÞ
dx

¼ f : ð81Þ

The sum rule (81) corresponds to the first moment of the spectral measure l(x) and can be used to calculate the unknown
parameter of micro-geometry, the volume fraction f, using the reconstructed spectral measure l as described in Section 4.

6. Numerical examples

This section describes numerical experiments which illustrate the effectiveness of the developed method. We consider
isotropic and anisotropic mixtures of silver and silicon dioxide (AgSiO2) and of magnesium and magnesium fluoride
(MgMgF2) and simulate frequency dependent measurements using analytic models of composites presented in previous sec-
tion. We use these simulated measurements as data for the developed Padé approximation method and compare the recov-
ered spectral function with the known analytical model.

The permittivity of silicon dioxide (SiO2) or magnesium fluoride (MgF2) considered as the background matrix materials in
the mixtures, is taken as a dispersionless constant. The frequency-dependent permittivity of the metallic particles of silver
(Ag) or magnesium (Mg) taken as inclusion materials in the composites, is given by the Drude dielectric model (see [27]):

�1 ¼ �metalðxÞ ¼ 1�
x2

p

xðxþ icÞ : ð82Þ

Here x is the circular frequency, xp is the plasma frequency, c is the damping constant and i ¼
ffiffiffiffiffiffiffi
�1
p

.
The parameter xp and the relaxation time s = 1/c of the dielectric metallic grains of silver (Ag) and magnesium (Mg) are

given in Table 1. The permittivity of background matrix material is �2 = 2.2 for fused quartz (SiO2) in the AgSiO2 mixture, and
�2 = 1.96 for magnesium fluoride (MgF2) in the MgMgF2 mixture. They are shown in Table 1 as well. The frequency-depen-
dent values of the effective complex permittivity �* for the mixtures of AgSiO2 with silver (Ag) inclusions and of MgMgF2

with magnesium (Mg) inclusions were simulated using described models of microstructure of composite materials.

6.1. Results of computations for isotropic composites

We consider isotropic composites with different microstructure: coated spheres structure given by (62), prolate and ob-
late spheroids geometry given by (60). The Padé coefficients of the rational function a(s)/b(s) were reconstructed using sim-
ulated values of the effective complex permittivity �* at 25 data points in a range of frequency: 0 6x 6xp = 9.4 � 1015 s�1.
These coefficients were used to compute a partial fraction decomposition of a(s)/b(s). The partial fraction decomposition
gives an approximation to the function F(s) and to the density of the spectral function l.

Fig. 3 shows results of reconstruction of the density of the spectral function l. Left Fig. 3 shows results for a composite of
30% of silver (Ag) in silicon dioxide (SiO2). Right Fig. 3 shows reconstructed spectral densities for a composite of 20% volume
of magnesium (Mg) in magnesium fluoride (MgF2). In both cases, the composites were modeled as isotropic mixtures with
coated spherical, prolate–spheroidal and oblate–spheroidal inclusions.

For the isotropic composite with coated spherical inclusions the true delta function solution, which has a pole at the loca-
tion s = 0.2333 with residue f = 0.3 for the AgSiO2 mixture and s = 0.2667 with residue f = 0.2 for the MgMgF2 mixture, is
reconstructed almost exactly.

Table 1
Physical parameters of complex permittivity of materials in composites.

Material c�1 xp Material Permittivity �2

Ag 2.5 � 10�15 s 9.4 � 1015 s�1 SiO2 2.20
Mg 2.5 � 10�16 s 9.4 � 1015 s�1 MgF2 1.96

D. Zhang, E. Cherkaev / Journal of Computational Physics 228 (2009) 5390–5409 5401



Author's personal copy

For the models with prolate spheroidal and oblate spheroidal inclusions, the spectral density function has two poles. The
true spectral density function found analytically is

l�ps ¼ 0:173dðs� 0:392Þ þ 0:127dðs� 0:018Þ;
l�os ¼ 0:074dðs� 0:776Þ þ 0:226dðs� 0:054Þ ð83Þ

for 30%Ag–70%SiO2 mixture, and

l�ps ¼ 0:122dðs� 0:425Þ þ 0:078dðs� 0:019Þ;
l�os ¼ 0:056dðs� 0:804Þ þ 0:144dðs� 0:060Þ ð84Þ

for 20%Mg–80%MgF2 where d(s) is the Dirac delta function. The reconstructed solutions shown in Fig. 3 accurately identify
the support of the spectral function as well as its amplitude. The values of the real part and the imaginary part of the complex
permittivity �* for PS-and OS-composites used as data, are shown in Fig. 4 for the 30%Ag–70%SiO2 mixture and in Fig. 5 for
the 20%Mg–80%MgF2 mixture.

It can be seen from Figs. 4 and 5 that for the AgSiO2 mixture with prolate spheroidal and oblate spheroidal inclusions, the
curves of real and imaginary parts of �* contain two transition points in the x-plane which correspond to the two poles of
spectral density function l in the complex s-plane. The real and imaginary parts of �* for the MgMgF2 mixture with prolate
spheroidal and oblate spheroidal inclusions show no significant transition points in the x-plane corresponding to the two
poles of the spectral density function l in the complex s-plane. In spite of this difference, the developed method works
equally well in both cases.

6.2. Results for anisotropic composites

Anisotropic composites containing inclusions of coated elliptical cylinders were modeled using formulas (73). Measure-
ments of the effective permittivity were simulated in the same range of frequencies as in previous section. The analytic
expression of the true spectral density function l derived for two anisotropic composite materials are

l� ¼ 0:3dðs� 0:175Þ; 0:3dðs� 0:525Þ;0:3dðsÞ½ �I3 ð85Þ

for 30%Ag–70%SiO2 mixture, and

l� ¼ ½0:2dðs� 0:2Þ;0:2dðs� 0:6Þ;0:2dðsÞ�I3 ð86Þ

for 20%Mg–80%MgF2 composite material.
The residues and poles of spectral density functions lx, ly, and lz are shown in left Fig. 6 and in left Fig. 7, they are recon-

structed very accurately. The computed values of real and imaginary parts of effective permittivity ��x and ��y are in good agree-
ment with the simulated measurements as shown in right Fig. 6 for the 30%Ag–70%SiO2 composite and right Fig. 7 for the
20%Mg–80%MgF2 composite. These results of numerical simulations demonstrate the efficiency of the developed method.

6.3. Results for 3D Bruggeman effective medium

To further verify the effectiveness of the inversion method developed in Section 4, we consider a frequency–dependent
metallic particles composite of magnesium (Mg) and magnesium fluoride (MgMgF2) modeled as 3D Bruggeman EMA med-
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Fig. 3. Reconstruction of residues and poles of the density of the spectral measure l for composite of 30%Ag–70%SiO2 (left) and for composite of 20%Mg–
80%MgF2 (right). Coated spherical, prolate spheroidal and oblate spheroidal inclusion structures were used as composite models.
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Fig. 4. True and computed real and imaginary parts of effective permittivity �* as functions of frequency x/xp for mixtures of 30%Ag–70%SiO2 with two
types of inclusions. Left: Isotropic composite with inclusions of prolate spheroid shape. Right: Isotropic composite with inclusions of oblate spheroid shape.
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ium. The effective permittivity measurements were simulated at 40 data points in the same range of frequencies as in pre-
vious examples in Sections 6.1 and 6.2. We considered a composite with volume fraction f = 0.15 of Mg component.

The recovered poles and residues of the spectral function for 3D Bruggeman EMA model are shown in the left part of Fig. 8
for the case p = q = 15, reconstruction without constraints in the inversion process. The corresponding true and computed
real and imaginary parts of F(s) used as data are illustrated in right part of Fig. 8. Left figure in Fig. 9 shows results of recon-
struction using constraints in the inversion. It is seen from Figs. 8 and 9 (left) that there are nine valid reconstructed poles
which are located between 0.04668 and 0.71998 in the unit interval [0,1), and the other 6 poles are off the unit interval in
the complex s-plane.

We also compared analytically and numerically calculated spectral density functions. The right figure of Fig. 9 shows the
true spectral density function m(x) and the approximation �mðxÞ of the spectral density computed using the Padé approxi-
mants of different orders (1) p = q = 15 and (2) p = q = 9.

The approximation �mðxÞ of the spectral density function m(x) at each location of a reconstructed pole sn with the corre-
sponding residue An, is calculated using the following approximation formula

�mðsnÞ ¼
dlðxÞ

dx

����
x¼sn

� An

ðsnþ1 � sn�1Þ=2
ðn ¼ 1;2; . . . ; �qÞ; ð87Þ

where s0 ¼ x1; s�qþ1 ¼ x2, and �q is the total number of validly reconstructed poles of the spectral function.
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Fig. 8. 3D Bruggeman EMA model of 15%Mg–85%MgF2 composite. Left: Poles and residues of the spectral measure l reconstructed without constraints,
Padé approximations of order p = q = 15. Right: True and computed real and imaginary parts of F(s) (p = q = 15 and p = q = 9).
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6.4. Stability of reconstruction

The purpose of the next series of computations is to numerically examine the stability of the computational scheme. We
calculated the volume fraction of magnesium (Mg) component in the 3D Bruggeman effective medium model of magnesium
and magnesium fluoride (MgMgF2) mixture using noisy data. To simulate the errors in the data, we used a uniformly distrib-
uted random noise calculated as percentage of the true value of effective permittivity �* at each of the 40 sample data points
at the same range of frequency as described in the beginning of the section. 1%, 3%, and 5% noise was added to the data. A
summary of the sensitivity analysis for the calculated volume fraction of the Mg component in MgMgF2 composites of var-
ious volume fractions of magnesium phase using noisy data is shown in Table 2. The first row in the table shows the true
volume fractions of the magnesium component, while the other three rows present the calculated volume fractions of the
magnesium phase. The results of computations show that even with added noise, the recovered volume fractions of magne-
sium (Mg) component agree with the true values. This demonstrates the stability of the reconstruction algorithm.

7. Conclusion

We developed a numerical inversion method for reconstruction of the spectral measure in Stieltjes representation of the
effective complex permittivity of composite material using constrained partial fractions decomposition of Padé approxima-
tion. The Stieltjes spectral representation of the effective complex permittivity of a composite factors out the geometric
information from dependence of the effective permittivity on the properties of the components. The representation can
be reconstructed from the measurements of the effective complex permittivity in a range of frequency of the applied field.
We derived a discrete approximation of the spectral function by employing solution to the corresponding boundary-value
problem. This gives an extension of the Bergman’s spectral representation to three-dimensional anisotropic binary compos-
ites. Studying the spectral properties of the operator allowed us to derive the efficient numerical algorithm for constructing a
finite dimensional approximation of the spectral measure based on Padé approximation followed by its partial fractions
decomposition. The problem is formulated as a constrained least squares minimization problem with regularization con-
straints provided by the spectral properties of the operator. The method was verified using analytical models of composites
with coated cylindrical and ellipsoidal inclusions as well as 3D Bruggeman analytic model which has a continuous spectral
density function. The performed numerical experiments for estimation of the fractions of components in a mixture of silver
and silicon dioxide and in a composite of magnesium and magnesium fluoride show the effectiveness of the presented
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Fig. 9. Reconstructed with constraints poles and residues of the spectral measure l(x) (left) and spectral density function m(x) (right) for 3D Bruggeman
EMA model of 15%Mg–85%MgF2 mixture (p = q = 15 and p = q = 9).

Table 2
Volume fractions calculated for the 3D Bruggeman EMA model using Padé approximation of order p = q = 7 and 40 sample data points with added 1%, 3%, 5%
noise.

ftrue 0.05 0.10 0.15 0.20 0.25 0.30

Noise 1% 0.05001 0.09996 0.14955 0.20016 0.25005 0.29922
Noise 3% 0.05031 0.09991 0.14872 0.20075 0.25125 0.30128
Noise 5% 0.05115 0.09984 0.14786 0.20119 0.25211 0.30267
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approach. The spectral function recovered from the measurements of effective complex permittivity can be used to evaluate
volume fractions of materials in the mixture or other structural parameters of the composite material.
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Appendix A. Proof of Theorem 1

To show the linearity of the operator Ĉi
vði ¼ 1;2;3Þ, for any two functions wðiÞ1 ;w

ðiÞ
2 2 HðiÞ1 and a; b 2 R, we have

Ĉi
vðawðiÞ1 þ bwðiÞ2 Þ ¼

Z
X
vr0Giðy; y0Þ � r0ðawðiÞ1 þ bwðiÞ2 Þdy0

¼ a
Z

X
vr0Giðy; y0Þ � r0wðiÞ1 dy0 þ b

Z
X
vr0Giðy; y0Þ � r0wðiÞ2 dy0 ¼ aĈi

vw
ðiÞ
1 þ bĈi

vw
ðiÞ
2 : ðA:1Þ

In order to show the self-adjoint property of the operator Ĉi
v, we notice that the Green’s functions Gi are real and satisfy

Giðy; y0Þ ¼ Giðy0; yÞ ði ¼ 1;2;3Þ ðA:2Þ

and for any two functions /ðiÞ;wðiÞ 2 HðiÞ1 , we have

Ĉi
vw
ðiÞ;/ðiÞ

D E
Hv

1

¼
Z

X
vr Ĉi

vw
ðiÞ

� 	�
� r/ðiÞdy ¼

Z
X
vðyÞ

Z
X
vðy0Þrr0Giðy; y0Þ � r0 wðiÞðy0Þ

� 	�
dy0

� 

� r/ðiÞðyÞdy

¼
Z

X
vðy0Þ r0

Z
X
vðyÞrGiðy0; yÞ � r/ðiÞðyÞdy

� 

� r0 wðiÞðy0Þ

� 	�
dy0 ¼

Z
X
vr0Ĉi

v/
ðiÞ � r0 wðiÞ

� 	�
dy0

¼ wðiÞ; Ĉi
v/
ðiÞ

D E
Hv

1

: ðA:3Þ

Therefore, hĈi
vw
ðiÞ;/ðiÞiHv

1
¼ hwðiÞ; Ĉi

v/
ðiÞiHv

1
implies that the linear integral operator Ĉi

v : HðiÞ1 ! HðiÞ1 is self-adjoint. This com-
pletes the proof of theorem. h

Appendix B. Proof of Theorem 2

For each eigenfunction wðiÞn , rewrite the Eq. (24) as

sðiÞn DwðiÞn ¼ r � vrwðiÞn ði ¼ 1;2;3; n ¼ 1;2; . . .Þ: ðB:1Þ

Multiplying the Eq. (B.1) by wðiÞn and integrating over the domain X on both sides of this equation, we obtain

sðiÞn

Z
X

DwðiÞn wðiÞn dy ¼
Z

X
r � vrwðiÞn wðiÞn dy: ðB:2Þ

The boundary conditions (11) for the eigenfunction wðiÞn and the divergence theorem imply that the inequalities

0 6 sðiÞn ¼
R

X vrwðiÞn � rwðiÞn dyR
XrwðiÞn � rwðiÞn dy

¼
R

X1
j rwðiÞn j

2dyR
X j rwðiÞn j

2dy
< 1 ðB:3Þ

hold. Therefore, all the eigenvalues sðiÞn of the eigenvalue problem (29) are real and are located in the unit interval s 2 [0,1).
This completes the proof of theorem. h

Appendix C. Proof of Theorem 3

Let sðiÞn and sðiÞm ðm – nÞ be eigenvalues of Ĉi
vði ¼ 1;2;3Þ, and let wðiÞn and wðiÞm be corresponding eigenfunctions. Then

Ĉi
vw
ðiÞ
n ¼ sðiÞn wðiÞn ; Ĉi

vw
ðiÞ
m ¼ sðiÞm wðiÞm : ðC:1Þ

Since Ĉi
vði ¼ 1;2;3Þ is self–adjoint, and sðiÞn and sðiÞm ðm – nÞ are real, we get

sðiÞn wðiÞn ;w
ðiÞ
m

D E
Hv

1

¼ sðiÞn wðiÞn ;w
ðiÞ
m

D E
Hv

1

¼ Ĉi
vw
ðiÞ
n ;w

ðiÞ
m

D E
Hv

1

¼ wðiÞn ; Ĉ
i
vw
ðiÞ
m

D E
Hv

1

¼ wðiÞn ; s
ðiÞ
m wðiÞm

D E
Hv

1

¼ sðiÞm wðiÞn ;w
ðiÞ
m

D E
Hv

1

: ðC:2Þ
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Since sðiÞn – sðiÞm , we must have hwðiÞn ;w
ðiÞ
m iHv

1
¼ 0, which means orthogonality of wðiÞn and wðiÞm . This completes the proof of

theorem. h

Appendix D. Proof of Theorem 4

We expand an arbitrary function /ðiÞ 2 HðiÞ1 in terms of the orthonormal set of eigenfunctions fwðiÞn g
1
n¼1ði ¼ 1;2;3Þ as

/ðiÞ ¼
X

n

anw
ðiÞ
n ; an ¼ h/ðiÞ;wðiÞn iHv

1
; ðD:1Þ

so that h/ðiÞ;/ðiÞiHv
1
¼
P

a2
n. Products hĈi

v/
ðiÞ;/ðiÞiHv

1
and hĈi

v/
ðiÞ; Ĉi

v/
ðiÞiHv

1
can be represented by sums of products of eigenfunc-

tions, i.e.,

Ĉi
v/
ðiÞ;/ðiÞ

D E
Hv

1

¼
X

k

ak Ĉi
vw
ðiÞ
k ;
X

n

anw
ðiÞ
n

* +
Hv

1

¼
X

k

ak sðiÞk wðiÞk ;
X

n

anw
ðiÞ
n

* +
Hv

1

ðD:2Þ

and

Ĉi
v/
ðiÞ; Ĉi

v/
ðiÞ

D E
Hv

1

¼
X

k

ak Ĉi
vw
ðiÞ
k ;
X

n

anĈi
vw
ðiÞ
n

* +
Hv

1

¼
X

k

ak sðiÞk wðiÞk ;
X

n

ansðiÞn wðiÞn

* +
Hv

1

: ðD:3Þ

Therefore, using Theorem 2 and mutual orthonormality of the eigenfunctions to estimate (D.2) and (D.3), we obtain

Ĉi
v/
ðiÞ;/ðiÞ

D E
Hv

1

¼
X

k

a2
k sðiÞk P 0; ðD:4Þ

which shows that Ĉi
v is non-negative, and

Ĉi
v/
ðiÞ; Ĉi

v/
ðiÞ

D E
Hv

1

¼
X

k

a2
kðs
ðiÞ
k Þ

2
6

X
k

a2
k ¼ /ðiÞ;/ðiÞ

D E
Hv

1

; ðD:5Þ

which proves that Ĉi
v is bounded. This completes the proof of theorem. h

Appendix E. Proof of Theorem 5

We expand the solution w(i) of the boundary-value problem (8) and (9) in series of eigenfunctions wðiÞj

uðiÞ ¼
X

j

cðiÞj wðiÞj ; ðE:1Þ

where cðiÞj (j = 1,2, . . .) are undetermined coefficients. Substituting (29) and (E.1) into (22), we get

uðiÞ ¼ yi þ
1
s
Ĉi

v

X
j

cðiÞj wðiÞj ¼ yi þ
1
s

X
j

cðiÞj sðiÞj wðiÞj ði ¼ 1;2;3Þ: ðE:2Þ

Taking the inner product with wðiÞn ðn ¼ 1;2;3; . . .Þ on both sides of (E.2), we have

X
j

cðiÞj wðiÞj ;w
ðiÞ
n

* +
Hv

1

¼ yi;w
ðiÞ
n

D E
Hv

1

þ 1
s

X
j

cðiÞj sðiÞj wðiÞj ;w
ðiÞ
n

D E
Hv

1

: ðE:3Þ

Using mutual orthonormality of the eigenfunctions wðiÞj : hwðiÞm ;w
ðiÞ
n iHv

1
¼ dmn and solving for cðiÞn ðn ¼ 1;2; . . .Þ in (E.3) for each i,

the eigenfunction expansion of u(i) (i = 1,2,3) is given by

uðiÞ ¼
X

n

cðiÞn wðiÞn ; cðiÞn ¼
s yi;w

ðiÞ
n

D E
Hv

1

s� sðiÞn

: ðE:4Þ

Recalling (22) for the expression of u(i) in terms of Ĉi
v and yi, and noticing (28) and (34), we obtain the component Fii(s) of F(s)

FiiðsÞ ¼
1

sV

Z
X
v @uðiÞ

@yi
dy ¼ 1

V
ðsI3 � Ĉi

vÞ
�1yi; yi

D E
Hv

1

¼ 1
sV

uðiÞ; yi

� �
Hv

1
: ðE:5Þ

It follows from (E.4) that

FiiðsÞ ¼
1

sV

X
n

s yi;w
ðiÞ
n

D E
Hv

1

s� sðiÞn

wðiÞn ; yi

D E
Hv

1

¼
X

n

AðiÞn

s� sðiÞn

; ðE:6Þ
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where AðiÞn ¼ jhyi;w
ðiÞ
n iHv

1
j2=V , which proves (35) and (36). Expanding the function yi(i = 1,2,3) in terms of wðiÞn , i.e.,

yi ¼
X

n

bnw
ðiÞ
n ; bn ¼ yi;w

ðiÞ
n

D E
Hv

1

;

we obtain the scalar inner product

yi; yih iHv
1
¼
X

n

yi;w
ðiÞ
n

D E
Hv

1

wðiÞn ; yi

D E
Hv

1

¼ j yi;w
ðiÞ
n

D E
Hv

1

j2:

Therefore, the sum of all residues AðiÞn isX
n

AðiÞn ¼
1
V

X
n

yi;w
ðiÞ
n

D E
Hv

1

wðiÞn ; yi

D E
Hv

1

¼ 1
V

yi; yih iHv
1
:

This last equality together with the scalar inner product hyi; yiiHv
1
¼
R

X vryi � ryidy implies that the sum ruleX
n

AðiÞn ¼
1
V

Z
X
vei � eidy ¼ f ðE:7Þ

holds. Since the volume fraction f of the first component in the mixture is less than one, it is proved that

0 6 AðiÞn < 1; 0 <
X

n

AðiÞn < 1 ðn ¼ 1;2;3 . . . ; i ¼ 1;2;3Þ:

This completes the proof of theorem. h
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