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Abstract

In electrical tomography, to determine the conductivity of a body
or of a region of the earth, currents are injected on the surface and
surface voltage responses are measured. Then the data are inverted to
a conductivity distribution which matches the measurements. Usually
all available data are used in the belief that pertinent information in
the complete data set will be utilized. However, only part of the data
contains useful information. This paper addresses means of specifying
the optimal data so that pertinent data or data combinations can be
interpreted while less pertinent or irrelevant data or data combinations
are ignored.

It is suggested to reconstruct only those projections of the unknown
conductivity distribution which can be reliably restored from the data
with a given noise level. Information about these projections is con-
tained in the eigenvalues of the currents to voltage mapping. Recon-
struction of only these projections simplifies the inversion procedure.
A numerical example is given for the geoenvironmental problem of
monitoring a contaminated area.

1 Introduction

An attractive and popular method of estimating the conductivity structure
of the earth is to use minimization of a least squares functional of the data
misfit in terms of the earth conductivity distribution [7, 19]. However,
as implemented, such techniques use data which are specified prior to
implementation of the imaging and which may not be optimal in resolving
the earth structure of interest. The general philosophy is to use all the
specified data in the trust that pertinent information is contained in the
complete data set. Most inversion schemes that have been developed for
geoelectrical imaging deal with predetermined data [14, 20]. However,
not all data contain equally important information about the conductivity
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distribution. An approach based on using optimal data was developed in
[15, 16, 3].

This paper addresses means of specifying optimal data in the context of
gradient imaging methods, so that pertinent data or data combinations can
be interpreted while less pertinent or irrelevant data or data combinations
are ignored. We suggest to reconstruct only those projections of the
unknown conductivity distribution which can be reliably restored from the
data with a given noise level. Information about these projections together
with information about the optimal data is contained in the eigenvalues of
the currents to voltages mapping. The eigenvalues of this operator form
a very rapidly decreasing sequence [9]. It is clear that only data due to
the currents with eigenvalues which are greater than the data noise level
contain valuable information about the conductivity distribution. Numerical
computation of the eigenvalues for the models with a localized inclusion
show that only two to five eigenvalues are greater than the reasonable noise
in measurements. Reconstruction of only the projections corresponding
to these data simplifies the inversion procedure and allows us to save
computational efforts.

2 Formulation of the problem

Let us consider a body Ω of conductivity γ and assume that arbitrary
currents can be applied on its boundary ∂Ω and the generated voltages
measured also on the boundary. The forward problem is described by the
conductivity equation:

∇ · γ∇w = 0 in Ω, γ
∂w

∂n
= f on ∂Ω,(1)

where the current f satisfies the integral restriction:

∫

∂Ω
f dx = 0.(2)

The solution of equation (1) is unique up to a constant component which is
determined if a zero value of the function is prescribed; so we assume that
∫

∂Ωw dx = 0. We denote as L̃2 (∂Ω) a subspace of functions from L2 (∂Ω)
satisfying to (2).

Boundary voltages are given by a linear operator Rγ(f) = w, which is
the Neumann to Dirichlet operator, L̃2 (∂Ω) → L̃2 (∂Ω) . It maps currents
applied on the boundary to measured voltages. This operator is linear with
respect to current f and it is nonlinear with respect to γ.

Let γ∗ be the unknown conductivity of the real medium. The inverse
conductivity problem is to determine the function γ∗ from measuring the
boundary voltage responses or from knowledge of the Neumann to Dirichlet
map Rγ∗(f). Solution of this problem is unique in the class of smooth or
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piecewise analytic functions [6, 13, 17] provided the Neumann to Dirichlet
map Rγ∗ is known.

Hence solving this inverse problem is equivalent to solving a system of
an infinite number of equations with respect to γ∗:

{ Rγ∗(fk) = wk } , k = 1, 2, ...,(3)

where {fk} is a system of applied currents, and {wk} are the corresponding
voltages measured on the surface.

As the Neumann to Dirichlet map is linear, solving the inverse problem
can be accomplished by solving (3) for a system of functions {fi} which
forms a basis in L̃2.

Let γ be a calculated approximation of the function of conductivity γ∗.
The voltage responses generated on the boundary of the body of conductivity
γ are Rγ(f). Let us consider a current to voltage difference operator Vγ∗−γ :

Vγ∗−γ(f) = Rγ∗(f) −Rγ(f),(4)

which corresponds to the difference in voltage responses generated by the
media γ∗ and γ due to the same injected current f .

Inverse problem now can be formulated as a problem of minimization of
a norm of the operator Vγ∗−γ with respect to γ:

‖ Vγ∗−γ ‖ → min
γ
.(5)

It means that we want to find a function γ such that if used in the
equation (1), generates responses Rγf which are as close as possible to the
measured responses Rγ∗f for any applied current f .

It follows from the uniqueness results cited above that solution of
the problem (5) provides the true solution of the inverse problem in the
class of smooth or piecewise analytic functions, because in this case the
Neumann-to-Dirichlet map Rγ for the constructed function γ coincides with
the Neumann-to-Dirichlet map Rγ∗ corresponding to the true conductivity
function γ∗.

In the next section we describe eigenfunctions and eigenvalues of the
voltage difference operator (4) and the corresponding spectral boundary
value problem. A variant of this spectral problem, valid in the case when
the operator (4) is positive-definite, was introduced in [11, 9] for evaluating
the best optimal current. In the present form, which is valid also when
eigenvalues of Vγ∗−γ are of arbitrary sign, this problem was introduced in
[2]. We will see below in (28) that the sign of the first eigenvalue M1 of the
operator (4) depends on the difference of the conductivities γ∗ − γ and can
be arbitrary.

The difference between the measured and calculated responses is de-
scribed by the misfit functional

Σfα
‖ Rγ∗(fα) −Rγ(fα) ‖ 2,(6)
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where fα are applied currents. Usually this least squares functional is
considered for some chosen functions fα [5, 18] instead of (5).

When the system of functions {fα} forms a basis in L2 (∂Ω) this
functional is a particular case of (5). This corresponds to the euclidean norm
of the operator in (5) and takes all possible data into consideration. However,
as we show in section 4, in the presence of data noise, solution of the inverse
problem with functional (6) turns out to be equivalent to a solution for
a least squares functional with only a few dominant eigenfunctions of the
voltage difference operator taken as applied currents. Using this observation
we will show in sections 5 and 6, that having chosen some approximation
γ, the function δγ = γ∗ − γ is orthogonal to some directions in L2 (Ω).
Therefore, avoiding these directions in constructing a numerical scheme, we
can significantly save computational efforts.

3 Eigenfunctions of the current to voltage difference opera-

tor

For the eigenvalues Mi and eigenfunctions fi of the operator Vγ∗−γ we
have:

Mi fi = Vγ∗−γ fi.(7)

The eigenvalues Mi of the operator Hγ∗−γ , where Hγ∗−γ =
(V ∗

γ∗−γVγ∗−γ)1/2 and V ∗
γ∗−γ is the adjoint operator, satisfy the variational

formulation:

Mi = max
f : f⊥Sp[f1,...,fi−1]

〈Hγ∗−γf, f〉

〈f, f〉
,(8)

where the scalar product is in L2 (∂Ω). The eigenvalues Mi are equal to
the spectral values for Vγ∗−γ , Mi = |Mi |, and the norm of the operator
Vγ∗−γ is M1:

‖Vγ∗−γ ‖1 = M1.(9)

The inverse conductivity problem can now be formulated as a problem
of minimization of the norm ‖ · ‖1 of the operator Vγ∗−γ with respect to γ

J1 = ‖Vγ∗−γ ‖ 1 = max
f : ‖f‖=1

‖Rγ∗(f) −Rγ(f) ‖ L2 (∂Ω) → min
γ
.(10)

A closely related minimax variational functional is used for a different
class of minimizing functions in [1] for formulation of the problem of
detection of an inclusion with a restriction on the total volume fraction
of the inclusion material.

When M1, which depends on γ∗ − γ, is less than ǫ, where ǫ is a noise
level in measurements, we cannot distinguish the true solution γ∗ from the
solution given by the function γ. This approach was exploited in application
to the resolution problem of electrical tomography in [11, 4].
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It follows from (7)-(8) that the eigenfunctions of the operator Vγ∗−γ

satisfy the following system of Euler equations:

∇ · γ∗∇wi = 0 in Ω, γ∗
∂wi

∂n
=

1

Mi
(wi − ui) on ∂Ω,(11)

∇ · γ∇ui = 0 in Ω, γ
∂ui

∂n
=

1

Mi
(wi − ui) on ∂Ω,(12)

where γ∗ is the unknown conductivity distribution and wi is the correspond-
ing potential in the real medium; γ is the calculated approximation of the
function of conductivity distribution and ui is the corresponding potential;
and the function fi = 1

Mi
(wi − ui) is the eigenfunction of Vγ∗−γ .

The eigenfunctions fi form an orthogonal system, and any eigenfunction
fk is proportional to the potential difference Rγ∗(fk) − Rγ(fk) measured
on the boundary ∂Ω. The coefficient of proportionality Mk is such that
‖Rγ∗(fk) −Rγ(fk) ‖ is equal to ‖Mkfk ‖, which results in |Mk | = Mk.

In [2] it is shown that for a localized inclusion the eigenfunctions fi

concentrate the energy of the scattering current in the region of the inclusion,
hence maximizing the voltage response from the inclusion on the surface.

4 On equivalency of solutions for inexact measurements

We will show that for inexact measurements it is enough to use only a
few dominant eigenfunctions of the Neumann-to-Dirichlet difference map
Rγ∗(f)−Rγ(f) whose corresponding eigenvalues are greater than the noise
level in the data.

Generally the voltage difference operator Vγ∗−γ has eigenvalues
M0 > ... > Mq > ... which decrease very rapidly. In [9] it was shown
that they decrease exponentially. Numerical computations of the eigenval-
ues for the models with a localized inclusion show that only two to five
eigenvalues are significantly different from zero.

models of localized inclusions used in geoelectrical exploration.
Let ǫ be a data noise level, and suppose that only the first q eigenvalues

are greater than this noise, such that

M1 > ... > Mq > ǫ > Mq+1 > ...(13)

We can define the ǫ-null space Nǫ of the operator Vγ∗−γ as a subspace of
functions f ∈ L2 (∂Ω) such that, subject to the norm of current f equaling
one, ‖Vγ∗−γ(f) ‖ < ǫ . From the inversion point of view, functions from the
ǫ-null space Nǫ do not provide any valuable information on the conductivity
distribution, because the generated difference in responses is less than the
noise in the measurements.

It follows that only the first q eigenfunctions ’effectively’ span the range
of the difference operator Vγ∗−γ , and all other eigenfunctions belong to the
ǫ-null space of this operator.



6 Cherkaeva and Tripp

Hence different solutions of the inverse problem corresponding to a volt-
age difference which is less than the noise level are equivalent solutions,
insofar as they cannot be distinguished from analysis of boundary measure-
ments.

Let us suppose that we have two sets of voltage differences representing
the values of the operator Vγ∗−γ for the functions f1, f2, ...:

{v1, v2, ..., vq, vq+1, ...} and {v1, v2, ..., vq , 0, 0, ...}.(14)

Then if γ + σ1 = γ∗ is a true solution of the inverse problem:
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and γ + σ2 satisfies a “cut” system:
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,(16)

then γ + σ1 and γ + σ2 are equivalent solutions.
Proof of this immediately follows from the fact that since the eigenfunc-

tions fi form an orthonormal system in L2, then for any applied current the
voltage difference on the boundary ∂Ω generated by the functions γ + σ1

and γ + σ2 is less than the error of measurements ǫ:

max
f : ‖f‖=1

‖Rγ+σ1
(f) −Rγ+σ2

(f) ‖ L2(∂Ω) = Mq+1 < ǫ.(17)

This means that no current applied on the boundary will generate a
noticeable difference in voltages for the media with conductivity γ + σ1 and
γ + σ2.

Let us consider the functional (6). When the system of functions {fα}
forms a basis in L2 (∂Ω) the functional (6), being an euclidean distance
between the operators Rγ∗ and Rγ , is equal to the norm ‖ · ‖2:

‖Vγ∗−γ ‖
2
2 = Σfi

‖Vγ∗−γ(fi) ‖
2(18)

for the system of functions {fi} which are the eigenfunctions of the operator
Vγ∗−γ . But the solutions of the inverse problem for the functional (18)
and for a similar sum with only the first q terms are solutions which are
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equivalent up to the noise level. It means that the euclidean norm can be
considered for only functions fi which do not belong to the ǫ-null space Nǫ

of the operator Vγ∗−γ :
Σfi 6∈Nǫ

‖Vγ∗−γ(fi) ‖
2.(19)

Therefore given a particular conductivity distribution γ the functional
(19) can be considered instead of the euclidean norm ‖Vγ∗−γ ‖2, and this
functional is equal to the sum of the first q dominant eigenvalues:

Σfi 6∈Nǫ
‖Vγ∗−γ(fi) ‖

2 =
q

∑

i=1

Mi
2 =

q
∑

i=1

‖wi − ui ‖
2
L2 (∂Ω),(20)

where wi and ui are solutions of the equations (11)-(12) for the eigenfunc-
tions fi, fi = 1

Mi

(wi − ui).
For the norm ‖ · ‖1 we formulated an inverse problem in a previous

paragraph. Similarly, using the norm ‖ · ‖2 an inverse solution can be
constructed as a solution of the problem:

J2 = ‖Vγ∗−γ ‖
2
2 → min

γ
(21)

and constructing a numerical solution we can restrict ourselves to functions
fi 6∈ Nǫ.

The problems with least squares functionals are usually solved using
some gradient method. In any of these methods we use a Frechet derivative
of the functional and we need to calculate a linear increment of the solution
when the function of conductivity γ in the equation (11) is changed to γ+δγ,
where δγ is a small perturbation of the conductivity function.

5 Linearization of the problem and subspace containing the

solution

Let us consider a linearized problem assuming that the conductivity pertur-
bation is small, as was done in [3].

Let v be the additional scattering potential, v = w−u, and the potentials
w and u be the solutions of (11) corresponding to conductivity distributions
γ + δγ and γ, respectively.

We assume that supp (δγ) ∈ Ω̃ for some subdomain Ω̃ ⊂ Ω, and
δγ(x) = 0 , for x ∈ Ω \ Ω̃ . We suppose that δγ ∈ L2 (Ω̃) . Then

∇ · γ∇u = 0 in Ω, γ
∂u

∂n
= f on ∂Ω,

∇ · γ∇v = −∇ · δγ ∇u in Ω, γ
∂v

∂n
= 0 on ∂Ω .(22)

The inverse linearized problem is to find a conductivity distribution δγ

which fits the measured potential difference v on the surface for different
applied currents f , which are related by the equations (22).
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Using Green’s second formula the solution of the system (22) can be
represented in integral form,

v(x) =

∫

Ω
∇ · δγ∇u(y) G(x, y) dy

= −
∫

Ω
δγ(y)

∫

∂Ω
f(z) ∇yG(z, y) · ∇yG(x, y) dz dy,(23)

where G(x, y) is the Green’s function for the model problem with conduc-
tivity γ.

We can see that the linear increment v of the solution when the
conductivity function γ is changed to the function γ + δγ is given by the
integral linear operator (23), denoted as

v = Lδγ.(24)

Let us consider now the voltage difference operator Vγ∗−γ . Linearized in
γ , it has values v satisfying the linearized equation (22): Vγ∗−γf = v | ∂Ω .

For a current which is an eigenfunction fi of the operator Vγ∗−γ we have
fi(x) = 1

Mi

vi(x) , x ∈ ∂Ω . Here Mi is the corresponding eigenvalue of the
operator Vγ∗−γ .

Hence in the linearized problem the eigenfunctions satisfy the following
system of equations:

∇ · γ∇ui = 0 in Ω, γ
∂ui

∂n
= fi =

1

Mi
vi on ∂Ω,(25)

∇ · γ∇vi = −∇ · δγ∇ui in Ω, γ
∂vi

∂n
= 0 on ∂Ω.(26)

Integrating (26) by parts we obtain the first eigenvalue and the ‖ · ‖1

norm of the operator Vγ∗−γ :

‖Vγ∗−γ ‖ 1 = M1 = |M1| = |
∫

Ω
δγ ∇u1 · ∇u1 dy |,(27)

and similarly for any eigenfunction fi

Mi = −
∫

Ω
δγ ∇ui · ∇ui dy.(28)

Thus the eigenvalues of the voltage difference operator Vγ∗−γ are scalar
products (in L2 (Ω̃) ) of the function δγ = γ∗ − γ with functions φi =
∇ui · ∇ui.

Mi = 〈δγ, φi〉.(29)

Functions φi are the squared electric fields generated by the eigencurrents.
From this point of view the previous result on equivalency of solutions means
that if for some q the spectral values Mi, i > q, are less than the noise level
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ǫ the corresponding projections of δγ cannot be restored from the data,
because the corresponding scalar products are not distinguishable from zero.

In this case we can put 〈δγ, φi〉 = 0 for i > q within the equivalency of
the solutions.

For i 6= j and functions ψk = ∇ui · ∇uj it follows from (23) and
orthogonality of the functions {fi} in L2 that

〈δγ, ψk〉 L2 (Ω̃) = Mi 〈fi, fj〉 L2 (∂Ω) = 0.(30)

Hence, it turns out that the function δγ which can be restored from
noisy data is orthogonal to a subspace T0 in L2 (Ω̃) spanned by the functions
φi, i > q, and the functions ψk : T0 = Sp [φi, ψk], i = q+ 1, ..., k = 1, 2, ....

We will see in the next section that the functions φi, i > q, are nothing
but the results of the adjoint L∗ to the Frechet derivative operator L (24)
applied to the sets of data corresponding to eigencurrents with negligible
eigenvalues φn = L∗ vn for n = q + 1, ....

6 Construction of a numerical solution

Based on previous consideration, we assume a cut system of restrictions
in constructing the numerical solution of the inverse problem. Thus in
constructing an iterative scheme we use only data of the eigencurrents
corresponding to the eigenvalues of the voltage difference operator which
are greater than the noise level.

We consider two functionals F1 and F2, with F1 being based on
the norm ‖ · ‖1 of the voltage difference operator which is the maximal
eigenvalue, and F2 being based on the ‖ · ‖2 norm. The functional F1 is
a least squares functional based on data of the first eigencurrent, while the
functional F2 is a least squares functional based on the system of q dominant
eigenfunctions. We can compare the results of reconstruction using F1 and
F2 with reconstruction using a functional Ffα

based on data due to an
arbitrary function fα .

The solutions are developed with a gradient method. Gradient or quasi-
Newton methods are usually exploited when dealing with minimization of
a nonlinear functional of least squares type [8, 18]. In [5] the convergence
rate for a quasi-Newton method of solution of the least squares problem for
electrical tomography is estimated independently of the applied currents.

Applying some gradient method for minimization of the functional F1 we
obtain a ’backprojected’ or ’backpropagated’ solution ([18]). The functional
F1 is

F1 =
1

2
‖Vγ∗−γ ‖

2
1 =

1

2
||w1 − u1 ||

2,(31)

where w1 is the measured potential or the potential in the real medium
of unknown conductivity γ∗ corresponding to the optimal current, while
u1 is the background potential or calculated voltage corresponding to the
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optimal current and the medium of known conductivity γ. This means that
the functions w1 and u1 are solutions of the problem (11)-(12) for the first
eigenfunction f1 of the voltage difference operator Vγ∗−γ .

Using the ’chain rule’ for Frechet differentiation or varying the functional
F1 with respect to γ and using the linearized equation to calculate the
gradient we obtain the following:

δγF1 = 〈 (w1 − u1), δγ(w1 − u1) 〉, and δγ(w1 − u1) = L1 δγ,(32)

where L1 is linearized operator (23) when the current f in (23) equal to the
first eigencurrent f1. Now substituting into δF1 we obtain the gradient of
the functional with respect to δγ:

δF1 = 〈 (w1 − u1), L1 δγ 〉 = 〈L∗
1 (w1 − u1), δγ 〉 = 〈Γ, δγ 〉,(33)

where Γ is the gradient Γ = L∗
1 (w1 − u1) .

Steepest descent search gives δγ = −τΓ and standard methods ([8, 10])
can be used to determine the parameter of relaxation τ .

Using the explicit expression (23) with the first eigencurrent f1 and the
property of the eigenfunctions (7) we have:

L∗
1 (w1 − u1) = M1

∫

∂Ω
f1(z)∇yG(z, y) · ∇yu1(y) dz

= M1 ∇u1 · ∇u1.(34)

Let us consider the functional (6) for one function fα. We will show that
all directions in L2 (Ω) which are different from those given by expressions
similar to (34) for the first q eigencurrents are orthogonal to the difference
γ∗ − γ.

Any function fα and the corresponding voltage difference response
Vγ∗−γ(fα) can be presented as

fα = Σi αifi , with Σi α
2
i = 1 , and Vγ∗−γ(fα) = Σi αi Mi fi.(35)

For a functional Ffα
= ‖Vγ∗−γ(fα) ‖ 2 we have

δγFfα
= 〈(wfα

− ufα
), δγ(wfα

− ufα
)〉 = 〈Σi αiMifi , Σi αiLiδγ 〉,(36)

because from (22) and (35) it follows for the linearized difference vfα
=

wfα
− ufα

that:

vfα
(x) =

∫

Ω
δγ∇ufα

(y) · ∇G(x, y) dy

= Σi αi

∫

Ω
δγ∇ui · ∇G(x, y) dy(37)

and the last integral in (37) is the operator Li:

Liδγ =

∫

Ω
δγ∇ui · ∇G(x, y) dy(38)
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corresponding to the applied eigencurrent fi with generated potential ui.
Now

δγFfα
= 〈Σi,j αi αj Mi L

∗
j fi , δγ 〉,(39)

and

L∗
j fi =

∫

∂Ω
fi(x)∇uj(y) · ∇G(x, y) dy.(40)

We recall now that the eigenfunctions {fi} form an orthogonal system
in L2 (∂Ω). From this fact it follows that the true function δγ should be
orthogonal to L∗

j fi for i 6= j.

〈L∗
j fi , δγ 〉 =

∫

Ω
δγ(y)

∫

∂Ω
fi(x)∇uj(y) · ∇G(x, y) dx dy =

∫

∂Ω
fi(x)Mj fj(x) dx = 0.(41)

Therefore the solution δγ is orthogonal to the functions φi = L∗
i fi for fi

from the ǫ-null subspace Nǫ and to the functions ψk = L∗
j fi, for arbitrary

i, j such that i 6= j.
For the second functional F2 we deal only with nonzero projections of

the solution:

F2 =
1

2

q
∑

i=1

||wi − ui ||
2, δγF2 =

q
∑

i=1

〈 (wi − ui), δγ(wi − ui) 〉.(42)

We use linearized equations (24) to calculate the gradient:

δγF2 =
q

∑

i=1

〈 (wi − ui), Liδγ 〉,(43)

where Li is given by (38).
Similarly to the previous derivation for F1 we have:

q
∑

i=1

〈L∗
i (wi − ui), δγ 〉 = 〈

q
∑

i=1

L∗
i (wi − ui), δγ 〉 = 〈Γ, δγ 〉,(44)

where Γ is the gradient Γ =
∑q

i=1 L
∗
i (wi − ui) . Therefore in this case

the gradient does not include directions which are orthogonal to the true
solution.

7 Results of computer simulations

We apply an algorithm based on F1 minimization to the following problem
of monitoring a contaminated area. Let us consider a region of the earth
containing a waste deposit which can probably leak. We assume that
the waste container is resistive, and that the probable leakage is also
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Fig. 1. Cross section of the starting model (top) and the real medium with

leak (bottom). The scale on the bottom shows the values of resistivity in ohm.m.

resistive. Thus the model background resistivity distribution consists of
a homogeneous earth material of resistivity 100 ohm.m with an embedded
container of resistivity 1000 ohm.m. The size of the container is 5 m by 2 m
by 1 m. We assume that the container leaks, and we take as the real medium
the previous model with the leakage modeled as an additional inclusion of
resistivity 1000 ohm.m near the center of the right vertical side of the waste
container. The size of the leakage is 2.5 m by 1 m by 1 m.

Figure 1 shows a cross-section of the models - a starting initial model
and a real model with an inclusion which models leakage.

The electric current is assumed to be injected on the surface of the
Earth through a set of point electrodes located on a profile going along the
long horizontal axis of the container. We use an integral equations forward
modeling algorithm [12] in order to calculate the voltage response of the
medium and of the ’real’ medium.

We find the optimal current distribution on the surface using singular
value decomposition of the impedance matrix as described in [2]. Figure
2 shows eigenvalues of the voltage difference operator for this particular
conductivity distribution. We can see that only a few eigenvalues are signif-
icantly different from zero, which means that only data of the corresponding
eigencurrents provide some information about the inclusion.
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Fig. 2. Distribution of eigenvalues Mi before starting the inversion.

Knowing the optimal intensities of the current injected at different
electrodes we calculate the optimal background electric field inside the
earth as a weighted combination of the electric fields due to the unit
currents. We use a weight function in the vicinity of the electrodes to
ensure supp (δγ) ⊂ Ω̃. From calculation of the gradient the perturbation
of the conductivity function δγ is proportional to the optimal background
electric field. The coefficient of proportionality is calculated from the first
eigenvalue and the squared norm of the background field. This is the first
step of the iteration.

On the next step we take the ’improved’ conductivity γ+ δγ as a known
medium γ1 and repeat the process starting from the calculation of the
current distribution which is optimal for distinguishing this new background
from the real medium.

Figure 3 shows the cross-section of the medium as a result of calculations
after 1, 3, 9, and 24 iterations.

Figure 4 gives the values of the first eigenvalues for the different
iterations. This plot shows the rms norm of the difference between the
voltages generated by the real medium and by the medium with conductivity
calculated during the described iterative process.

Figure 5 shows the actual difference in voltage data on the surface before
starting the inversion and after 3, 9, 18, and 27 iterations.

8 Conclusions

In the present paper a solution of the inverse electric tomography problem
is suggested for measurements containing noise. In this case only a part of
the conductivity function can be restored from the data, and only a part of
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Fig. 3. Cross sections given by the solution of the inverse problem after 1,

3, 9, and 24 iterations. The scale on the bottom shows the values of resistivity in

ohm.m.
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Fig. 4. Size of the maximal eigenvalue with respect to the number of iterations.

the data contain information about the unknown function of conductivity
distribution.

The eigenvalues Mi of the current to voltage mapping show what
data components are informative and what projections of the conductivity
distribution γ can be determined from the data at a given noise level.

The algorithm for constructing an inverse solution for noisy data
provides a conductivity function from a set of solutions which are equivalent
up to the noise level. It is based only on those data which contain valuable
information, hence reducing the dimension of the problem and avoiding
unnecessary computations.
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