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Elena Cherkaeva and Alan C Tripp
The University of Utah, Department of Geophysics, 717 Browning Bldg, Salt Lake City, UT
84112, USA

Received 15 September 1995, in final form 8 May 1996

Abstract. In order to determine the conductivity of a body or of a region of the Earth
using electrical prospecting, currents are injected on the surface, surface voltage responses
are measured, and the data are inverted to a conductivity distribution. In the present paper a
new approach to the inverse problem is considered for measurements containing noise in which
data are optimally chosen using availablea priori information at the time of the imaging. For
inexact data the eigenvalues of the current-to-voltage boundary mapping show what part of the
conductivity function can be confidently restored from the measurements. A special choice
of measurements permits simple inversion algorithms reconstructing only this reliable part of
the solution, hence reducing the dimension of the inverse problem. The inversion approach is
illustrated in application to numerical modelling via a very fast approximate imaging solution.

1. Introduction

Traditional inversion of geo-electric surface data to a conductivity distribution presupposes
that the strengths of the sources are predetermined by the geophysical practitioner and
remain independent of the inversion process. The usual choice of uniform sources, which
is logistically tractable, is appropriate if littlea priori information is available about the
conductivity structure. However, if significanta priori information concerning the geo-
electric structure is known, as is the case in many geo-technical problems, then source
strengths can be optimized as a function of the known conductivities, to maximize the
resolution of the unknown component of the conductivity distribution. This optimization is
discussed and is used as the foundation of an effective three-dimensional imaging algorithm.

The eigencurrents of the current-to-voltage boundary mapping give distributed
transmitter currents which are ranked in information content by the size of the associated
eigenvalues. Only a few dominant eigenvalues exceed the noise level of the data, and
the corresponding eigencurrents are the only ones which give a voltage response above
the data noise. A computationally efficient imaging algorithm can be developed for the
measurements due to the dominant eigencurrents.

The present paper discusses one possible approach, in which injection currents,
distributed over a set of discrete points, are optimized to maximize the resolution of a
perturbation from somea priori conductivity distribution. The optimized injection currents
are expanded in terms of the eigencurrents of the current-to-voltage boundary mapping,
with the resolution of the conductivity distribution of the Earth dependent on the number
of eigencurrents included in the expansion. The paper considers the implications of this
expansion in the context of rapid and accurate imaging of geo-electric data. An algorithm
using data of only one eigencurrent is developed based on this approach; this algorithm is
applied to a numerical example for a conductive perturbation about a resistive body.
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2. Formulation of the inverse problem

Let � be a domain filled with a material of known, not necessary spatially constant,
conductivity γ , with some unknown inclusions of conductivityγ + σ , whereσ can also
vary spatially. We can apply various currentsf on the boundary of the domain∂� and
measure the corresponding voltage responses due to the applied excitations.

We consider the problem with the functionγ as a background problem, the
corresponding solutions of which are known. The problem is to find the unknown function
of conductivityσ .

The potentials and currents for the background mediumγ and the real mediumγ + σ

satisfy the conductivity equations

∇(γ + σ)∇w = 0 in � (γ + σ)
∂w

∂n
= f on ∂� (1)

and

∇γ∇u = 0 in � γ
∂u

∂n
= f on ∂� (2)

where the currentf satisfies the integral zero restriction:
∫

∂�

f dx = 0. (3)

Solution of the equation (1) is unique up to a constant component which is determined if a
zero value of the function is prescribed; so we assume that

∫

∂�
u dx = 0 and

∫

∂�
w dx = 0.

In the inverse problem we want to determine the functionσ from the knowledge of
potential responsesw | ∂� measured on the boundary∂�. The solution of this problem
is unique in the class of smooth or piecewise analytic functions [9, 15, 20] provided the
Neumann-to-Dirichlet mapsRγ+σ andRγ are known:

Rγ+σ (f ) = w|∂� w ∈ (1) and Rγ (f ) = u|∂� u ∈ (2). (4)

Assuming that the conductivity perturbation is small let us linearize the equations with
respect to the conductivity perturbation. The linearized equation for smallσ is an equation
for the additional scattering potentialv = w − u, and can be obtained from equations (1)
and (2). We assume that supp(σ ) ∈ �̃ for some subdomaiñ� ⊂ �, andσ(x) = 0, for
x ∈ � \�̃. We suppose thatσ ∈ L2(�̃). Then

∇ · γ∇u = 0 in � γ
∂u

∂n
= f on ∂�

∇γ∇v = −∇σ∇u in � γ
∂v

∂n
= 0 on ∂�.

(5)

Here f is an applied current,u is a potential of the electrical field in the model
background problem, andv is a fluctuation of the potential caused by the presence of
the inclusion.

The inverse linearized problem is to find a conductivity distributionσ which fits the
measured potential differencev satisfying (5) on the surface for the different currentsf .

Using Green’s second formula the solution of the system (5) can be represented in
integral form. From the second equation the functionv is expressed as

v(x) =

∫

�

∇σ∇u(y)G(x, y) dy

= −

∫

�

σ(y)∇yu(y)∇yG(x, y) dy. (6)
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HereG(x, y) is the Green’s function for the model background problem.
Analogously, functionu is presented as

u(y) =

∫

∂�

f (z)G(y, z) dz. (7)

Substitution of the last expression into (6) and differentiation by parts gives:

v(x) = −

∫

�

σ(y)

∫

∂�

f (z)∇yG(z, y)∇yG(x, y) dz dy. (8)

This is a linear integral operator usually exploited when solving an inverse problem.
When σ is expanded in a finite series in terms of given functions (for example, such as
piecewise constant functions) with unknown coefficientsσn, (8) gives an explicit expression
for the Jacobian matrix which needs to be inverted. Solution of the integral equation (8)
gives the formal solution to the inverse problem givenf .

Different inversion schemes have been developed in application to inverse electrical
tomography, nondestructive testing, and the inverse geo-electrical problem; see for example
a description of inversion techniques applied to the resistivity inverse problem [16] in
geophysics. Most of them deal with data as given, constructing methods of solution which
fit all the data. Recently a new approach has been taken which selects the data to use. A
very effective algorithm was suggested and numerically tested in [3, 19] for determination
of linear crack location by electrical measurements. The paper [8] contains a detailed
discussion of inverse problem resolution based on usage of different data sets.

In the present paper we suggest a solution of the linearized inverse problem for noisy
measurements. Only a part of the conductivity function can be confidently reconstructed
from noisy measurements. The eigenvalues of an operator mapping the injected currents to
the voltage response difference measured on the boundary show what part of the solution
can be restored. Reconstruction of this part of the solution permits simplification of an
imaging algorithm. In the next sections we discuss how a special choice of the functionsf

can simplify the inversion procedure.

3. The optimal currents

Currents applied on the boundary generate different voltage responses for the background
and the real media. Those which give the greatest anomalous response will be appropriate
for solving (8). In [13] currents with unitL2 norm on the boundary, which maximize the
voltage difference, were considered in connection with the problem of distinguishability of
an inclusion. In [4] examples are given of the currents which maximize the anomalous
response for three-dimensional models in a geoelectrical context.

Let us formulate the problem to which these currents provide the solution. Again let
Rγ (f ) be the voltage responseu|∂� on the boundary of the mediumγ due to an applied
currentf . Thus the boundary value of a functionv which solves the equation (5) equals
the functionRγ+σ (f ) − Rγ (f ) for the applied currentf .

Then the problem of maximizing the response on the boundary is an optimization
problem with respect to the current:

M = max
f ∈F

‖Rγ+σ (f ) − Rγ (f )‖L2(∂�) (9)

whereF is a chosen set of functions. Since the voltages are linear withf , we must restrict
the intensity of the injected current to avoid infinite values in the maximization procedure.
As in [13, 10] we fix theL2(∂�) norm of the applied currents

F = {f : ‖f ‖L2(∂�) = 1}. (10)
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With this restriction the problem (9) is an eigenvalue problem and its solution can be
found numerically using a standard SVD technique applied to the matrix of responses [4, 5]
or with adaptively changing injection current patterns [10] as an implementation of the
power method.

Solution of the problem (9) is a system of monotonically decreasing eigenvalues{Mi}

with the corresponding orthogonal eigenfunctions{fi}, i = 1, 2, . . ..
Being a solution of an eigenvalue problem the eigenfunctionf1 ∈ F maximizing the

functional (9) for the linearized problem (5) is proportional to the values of the function
v1 = Rγ+σ (f1) − Rγ (f1) on the boundary,

f1(x) =
1

M1
v1(x) x ∈ ∂� with M

2
1 = M2

1 =

∫

∂�

v2
1 dx (11)

where the sign of constantM1 depends on the sign of the perturbation from the background
conductivityσ , andM1 is the first eigenvalue of the problem (9).

A relationship similar to (11) is valid for every eigenfunction. Hence for anyi the
eigencurrent and the corresponding potential satisfy the system of equations:

∇γ∇ui = 0 in � γ
∂ui

∂n
= fi =

1

Mi

vi on ∂�

∇γ∇vi = −∇σ∇ui in � γ
∂vi

∂n
= 0 on ∂�

(12)

Utilizing this property of the eigenfunctions an integral representation for the
eigencurrent can be derived as follows. From the expression (8) we have an integral
equation for the eigenfunctions solving the eigenvalue problem (12):

fi(x) = −
1

Mi

∫

∂�

fi(z)

∫

�

σ(y)∇yG(z, y)∇yG(x, y) dy dz. (13)

The eigenvalueMi of the spectral problem (12) is

Mi =

∫

∂�

fi(x)vi(x) dx. (14)

Hence the result of multiplication of the expression (13) byvi(x) and integration over∂�

shows that the eigenvaluesMi are the scalar products of the functionσ with some functions
in L2(�).

Mi = −

∫

�

σ(y)∇ui(y)∇ui(y) dy = −(σ, |∇ui |
2)L2(�). (15)

The functions∇ui are electric fields in the background medium generated by the applied
currentsfi .

Similarly it follows from the orthogonality property of the eigenfunctionsfi that the
projection ofσ on the directions corresponding to the functions which are pointwise scalar
products∇ui(y)∇uj (y), y ∈ �, between the electric fields∇ui and ∇uj generated by
different eigencurrentsfi andfj is zero.

∫

∂�

fi(z)vj (z) dz =

∫

�

σ(y)∇ui(y)∇uj (y) dy = 0. (16)
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4. Equivalency of inverse solutions for inaccurate measurements

It is well known that the resolution of the inverse conductivity problem is not very high
[1, 7, 14, 17]. In this section we show that the solution of the inverse problem for a data
set containing noise and the solution corresponding to the data set generated by only a
few dominant eigencurrents are equivalent solutions. The number of these eigencurrents is
determined by the data noise level, and of course, it depends on the difference between the
real and the background conductivity distributions.

We apply the SVD technique to the impedance difference matrix, which immediately
gives us information about linear combinations of our data—which are valuable, and which
are not. Figure 2 in section 7 shows an example of such an analysis for the simulated
model. One can see that only a few dominant eigenvalues are significant. In this section
we show that if instead of all data we consider only data generated by the eigencurrents
corresponding to these eigenvalues, we are not able to distinguish the inversion results.

The eigenvalues{Mi} form a sequence of rapidly decreasing values [10]. It is clear
that only data from currents with eigenvalues which are greater than the noise level in the
measurements contain valuable information about the conductivity distribution. Numerical
results of computing the eigenvalues for the models used in [5] show that only two to five
eigenvalues are greater than the reasonable noise in measurements.

Suppose that noise of a levelǫ is present in the data such that starting from someMm

Mk < ǫ k > m. (17)

This means that the potential difference due to the currentsfk, k > m, registered on the
boundary∂� cannot be distinguished from the noise level:

Mk = ‖Rγ+σ (fk) − Rγ (fk)‖L2(∂�) < ǫ. (18)

In this case without loss of accuracy, we can setMk, k > m to be equal to zero. Different
solutionsσ1 andσ2 of the inverse problem for two sets of measured potential differences
{v1, v2, . . . , vm, vm+1, . . .} and{v1, v2, . . . , vm, 0, 0, . . .} should be recognized as equivalent
solutions.

Indeed, letσ1 be a true solution of the inverse problem:

Rγ+σ1(fi) − Rγ (fi) = vi i = 1, 2, . . . (19)

andσ2 be a solution satisfying a ‘cut’ system of restrictions:

Rγ+σ2(fi) − Rγ (fi) =

{

vi i = 1, 2, . . . , m

0 i > m.
(20)

The eigenfunctions{fi} form an orthonormal complete system inL̂2(∂�) = {f : f ∈

L2(∂�),
∫

L2(∂�)
f dx = 0}. Hence any applied currentf is presented as

f =
∑

αifi

∑

α2
i = 1 (21)

and the corresponding potential difference measured on the surface is

Rγ+σ1(f ) − Rγ (f ) =
∞

∑

i=1

αiMifi Rγ+σ2(f ) − Rγ (f ) =
m

∑

i=1

αiMifi (22)

Then for any applied current the difference between the potential values on the surface
generated by the functionsγ + σ1 andγ + σ2 is less than the error of measurements

max
f ∈L̂2(∂�),‖f ‖=1

‖Rγ+σ1(f ) − Rγ+σ2(f )‖L2(∂�) = Mm+1 < ǫ (23)
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and no current applied on the boundary can generate a noticeable difference, i.e. the systems
of equations (19) and (20) give equivalent solutions. In what follows, we consider the
inverse of the more appropriate set, (20), and assume that

M1 > M2 > · · · > Mm > ǫ Mm+1 = Mm+2 = . . . = 0. (24)

In the part of the paper describing numerical simulations we consider a case when only
the first eigenvalue is not zero:

M1 6= 0 M2 = M3 = . . . = 0. (25)

5. Inversion

Using only a finite number of currents we cannot hope to reconstruct the unknown
distribution of conductivity uniquely even for noise-free measurements. However, we would
like to ensure uniqueness of the numerical construction of the solution. Therefore we take a
minimal norm solution obtained using a variational approach similarly to [8]. We obtain a
moment problem [1, 6, 18] for the data corresponding to the dominant eigencurrents. Since
the system of equations has a special form, we can develop a solution in a simple fashion.

We will show first that a minimal norm solution of the inverse problem has a form

σ(y) =
∑

i,j

λi,j∇ui(y)∇uj (y) y ∈ �̃ (26)

whereui is a solution of the problem for an applied currentfi andλi,j are some constants.
Let us suppose that we have appliedN different eigencurrents on the surface∂� and

measured the corresponding voltage responses.
We want to find a functionσ which is of minimal norm, and which provides eigenvalues

of the currents-to-data mapMi(σ ), i = 1, 2, . . . , N , equal to the eigenvaluesMi obtained
from measurements. In addition the functionσ should generate orthogonal responsesvi

and vj for different optimal currentsfi and fj . In short the functionσ should satisfy
equations (15) and (16).

The functionσ should produce the voltage responseRγ+σ (fk) − Rγ (fk), which can be
expanded in terms of the orthogonal system of functions{fi} with the coefficients of the
expansion equal to:

((Rγ+σ (fk) − Rγ (fk)), fj ) = bi,j (27)

wherebi,j are the indexed integrals in (15) and (16),i = 1, 2, . . . , N , j = 1, 2, . . . , N .
In generalbi,i = −Mi and bi,j = 0 for i 6= j . Thus instead of matching the measured
responses, we try to fit their orthogonal expansions. The equations (15) and (16) then
assume the form:
∫

�

σ(y)∇ui(y)∇uj (y) dy = bi,j i = 1, 2, . . . , N j = 1, 2, . . . , N. (28)

We take as a variational functional the norm of the solutionσ :

J = min
σ∈R

‖σ‖2
L2(�)

. (29)

The constraint setR is the set of conductivity distributions satisfying the equations (28).
We bring these constraints into an augmented functionalJ̃ with Lagrange multipliers

λi,j .

J̃ = min
σ

∫

�

σ 2(y) dy +
∑

i,j

λi,j

( ∫

�

σ(y)∇ui(y)∇uj (y) dy − bi,j

)

(30)
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where the indices of summationi andj run from 1 toN .
The optimal solution satisfies the Euler equation which is obtained from the functional

(30) by varyingσ . Thus a necessary condition of optimality gives an expression for the
unknownσ :

σ(y) =
∑

i,j

λi,j∇ui(y)∇uj (y) y ∈ �̃. (31)

Hereui anduj are the solutions of the problem for the applied eigencurrentsfi andfj .
The coefficientsλi,j can now be found from equations (28).
Simplifying notation, we denote∇ui∇uj as functionsgk, k = 1, 2, . . . , N2 in L2(�)

with the scalar product

(gk, gl) =

∫

�

gk(y)gl(y) dy. (32)

Equation (31) then implies that we are seeking a functionσ in a subspaceS of L2(�)

spanned by the vectorsgk:

S = Span{g1, g2, g3, . . . , gK} K = N2 (33)

and

σ =
K

∑

k=1

αkgk (34)

where scalar coefficientsαk are the coefficientsλi,j , i = 1, . . . , N , j = 1, . . . , N .
The direct approach is to use the expression (34) and relationships (28) to determine

the coefficientsαk via a ‘method of moments’ approach (see, e.g., [11]). Hence we form
the GramianG for the functions{gk}

G(g1, g2, . . . , gK) =







(g1, g1) . . . (g1, gK)

(g2, g1) . . . (g2, gK)

. . . . . . . . .

(gK , g1) . . . (gK , gK)






(35)

and we face the problem of solving the linear system obtained from (28)

GX = B X = [α1, . . . , αK ]T B = [b1,1, b1,2, . . . , bN,N ]T (36)

which is ill-posed.
An effective way of solving the problem follows from analysis of the relationships

(15), (16) and (24) which show that the projections of the functionσ on the functions
gk = ∇ui∇uj are different from zero only wheni = j , i < m. Let the set of such indices
k beZ1, and the set of the indicesk of the functionsgk with zero scalar product withσ be
Z2, andZ1 + Z2 = {1, 2, . . . , K}.

From (15), (16) and (24) it follows that the functionσ is L2(�) orthogonal to any
function gk, k ∈ Z2:

σ(y) = αφ(y) φ ⊥ gk k ∈ Z2 (37)

whereα is a scalar.
This means that the functionσ lies in the subspaceT1 of S which is orthogonal to the

subspaceT2 spanned by the vectorsgk, k ∈ Z2.

T2 = Span{gk1, gk2, . . . , gkK−m
} ki ∈ Z2 T1 ∪ T2 = S. (38)

Hence what we need to do in order to find the functionσ is to compute a subspaceT1

of S which is orthogonal to the subspaceT2 = Span{gki
, ki ∈ Z2} and contains the solution

T1 = S\T2, and then to solve forσ in the subspaceT1 of dimensionm instead ofK.
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Let us for simplicity consider the case whenm = 1, so that only one current generates
data which are significantly greater than the noise level. The setsZ1 andZ2 in this case are
{1} and {2, 3, . . . , K}, and in order to find the functionσ we need to calculate a direction
φ in S which is orthogonal to the subspaceT2 = Span{g2, g3, . . . , gK}.

φ ∈ S φ ⊥ g ∀g ∈ T2. (39)

Then we use the length of the non-zero projection (15) ofσ on g1 to calculate the scalar
coefficientα:

α = −M1/(g1, φ). (40)

Hence we orthogonalize the system of functions{gk}, k = 2, 3, . . . , K and get an
orthonormal system{φi}, i = 1, 2, . . . , K − 1 which provides a basis in the subspaceT2.
The functionφ which satisfies (39) is then obtained as

φ = g1 −
K−1
∑

i=1

(g1, φi)φi (41)

and the coefficientα is found from (40).
In a general case whenm > 1 we still have to solve a linear system to calculateσ , but

its dimensionm is much less than the dimension of the original systemK.

6. Analysis of the numerical algorithm

Now we discuss numerical implementations of the suggested approach and in the next
section we describe the results of computer simulations.

We need to mention that solving forσ in the subspaceT1 of the dimensionm instead
of the spaceS of the original dimensionK does not decrease the accuracy of calculations.
As a solution we obtain a conductivity function which is equivalent up to the noise level to
the true solution.

A less time consuming way is possible when subspaceT1, which is the complementary
subspace toT2 and contains the solution, andT2 are well separated. In this case, the scalar
products of the functions(gki

, gkj
), ki ∈ Z1, kj ∈ Z2 are close to zero.

As the functionσ is orthogonal to any functiongkj
, kj ∈ Z2 and the scalar products of

the functions(gki
, gkj

), ki ∈ Z1, kj ∈ Z2 are negligible in this case, the coefficientsαkj
of

the expansion (34) are zero forkj ∈ Z2. Then

σ =
∑

ki∈Z1

αki
gki

(42)

and we only need to solve the system of equations with the matrix of dimensionm of the
scalar products of the functions{gki

, ki ∈ Z1}.
When m = 1, this corresponds to the situation that the functiong1 is taken as an

approximation ofφ. This is the way we proceed in the numerical simulations, results of
which are described in the next section.

Using (15) we find the coefficient of proportionalityα is expressed via a norm of the
background field:

α = −
M1

‖|∇u1|2‖2
. (43)

The final expression for the approximate minimal norm solution for one current data is:

σ(y) = −
M1

‖|∇u1|2‖2
|∇u1(y)|2 (44)
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with the norm||σ || equal toM1/‖|∇u1|
2‖. HereM1 is the first eigenvalue of the eigenvalue

problem (9) andM1 is the first eigenvalue of the eigenvalue problem (12).
There is an assumption in the formulation of the problem that we need to confront. We

assume that the inclusion is located at some distance from the boundary. As pictures in
[5, 4] show, the optimal current distribution inside the body concentrates near the surface
electrodes and in the region of the inhomogeneity. The behaviour of the optimal electrical
field is similar. Therefore, if we do not eliminate in advance the influence of the surface
electrodes it leads to a numerical algorithm which can be unstable—the first step of the
iteration reveals a big ‘false’ inclusion near the boundary, then the second step needs to
take it out, and so on. In order to avoid this, at least in such cases when we have additional
information about the approximate depth of the inclusion, we can introduce a weight function
q(y), y ∈ �, which attenuates the field near the electrodes. For example, if we know that
the inclusion is located not closer to the surface thanh we can take a unit weight function
for the depths greater thanh and let it grow exponentially when approaching the boundary.

In this case instead of functional (30) we need to consider the following functionalJq :

Jq = min
σ∈R

‖σ‖2
L2(�;q) (45)

with the same restrictions (28). The corresponding augmented functionalJ̃q is:

J̃q = min
σ

∫

�

q(y)σ 2(y) dy +
∑

i,j

λi,j

( ∫

�

σ(y)∇ui(y)∇uj (y) dy − bi,j

)

. (46)
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Figure 1. Cross section of the real medium with leak (top) and the starting model (bottom).
The scale on the bottom shows the values of resistivity in� m−1.
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Figure 2. Distribution of eigenvaluesMi before starting the inversion (top) and the intensity
distribution of the first optimal current (bottom).

The optimal solution of this problem is obtained analogously by varyingσ :

σ(y) =
∑

i,j

λi,j

∇ui(y)∇uj (y)

q(y)
. (47)

7. Results of computer simulations

In numerical simulations we assume the case where the relationship between the data noise
and the eigenvalues of the current-to-voltage mapping is such that only the first eigenvalue
M1 can be considered to be significantly greater than zero. In this case only the data set
corresponding to the first optimal current contains important information about an inclusion.
We show numerical results of iterative use of the algorithm of approximating the solution
for one injected current. The application is numerically modelling a geo-environmental
problem of monitoring a contaminated area.

We apply the developed algorithm to the following problem of monitoring a
contaminated area. Let us consider a region of the Earth containing a waste deposit
which can leak. We assume that the waste container is resistive, and that the probable
leakage is conductive. Thus the model background resistivity distribution consists of a
homogeneous Earth material of resistivity 100� m−1 with an embedded container of
resistivity 1000� m−1. The size of the container is 5 m by 2 m by 1 m. We assume
that the container leaks, and we take as the real medium the previous model with the
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Figure 3. Cross sections given by the solution of the inverse problem after one and three
iterations. The scale on the bottom shows the values of resistivity in� m−1.

leakage modelled as an additional inclusion of resistivity 20� m−1 near the centre of the
right vertical side of the waste container. The size of the leakage is 2.5 m by 1 m by 1 m.

Figure 1 shows a cross section of the models—a real medium with an inclusion which
models leakage and a starting initial model with no leakage.

The electric current is assumed to be injected on the surface of the Earth through a
set of point electrodes located on a profile going along the long horizontal axes of the
container. We assume that each electrode in its turn transmits the current, while all others
are the receiving electrodes. We use an integral-equation forward-modelling algorithm [12]
in order to calculate the voltage response of the background medium and of the ‘real’
medium. The accuracy of this algorithm is discussed in [2].

We assume that together with the ‘true’ voltages the measured data contain some
disturbances of rms error equal toǫ. The eigenvaluesM1, M2, . . . which exceed thisǫ
correspond to the data containing the information about the inclusion for the given noise
level. By neglecting eigenvalues smaller thanǫ, we assure that data rms matching will not
be better thanǫ, which is equivalent to contaminating synthetic data with a noise of level
ǫ, whose statistical meaning can be specified for the given application.

We find the optimal current distribution on the surface using singular value
decomposition of the impedance difference matrix as described in [5]. Figure 2 shows
eigenvalues of the problem (9) for this particular conductivity distribution and the surface-
current intensity distribution corresponding to the first eigencurrent. We can see that the
difference between the first two eigenvalues is quite big, so we can hope to obtain an
acceptable inversion result using data of only one optimal current.

Knowing the optimal intensities of the current injected at different electrodes we
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Figure 4. Distribution of eigenvaluesMi after three iterations (top) and the first eigencurrent
(bottom).

calculate the optimal background electric field inside the Earth as a weighted combination
of the electric fields due to the unit currents. We use a weight function as discussed above to
limit the image to features at some depth from the Earth’s surface. If the liquid in question
is buoyant then this constraint can be changed. The approximate conductivity functionσ is
proportional to the optimal background electric field. The coefficient of proportionality is
calculated as above. This is the first step of the iteration.

In the next step we take the ‘improved’ conductivityγ + σ as a background medium
γ1 and repeat the process starting from the calculation of the current distribution which is
optimal for distinguishing this new background from the real medium.

Figure 3 shows the cross section of the medium as a result of calculations after one and
three iterations.

Figure 4 gives eigenvalues of the impedance difference matrix for the conductivity
distribution after three iterations and shows the current intensity distribution corresponding
to the first eigencurrent. Comparing the top plot with the eigenvalue distributions in figure 2,
we can see a significant decrease of the first eigenvalue, which shows the rms difference
between the voltages generated by the real medium and by the medium with conductivity
calculated during the described iterative process.

Figure 5 shows the cross section of the medium as a result of calculations after 11
and 23 iterations.

Figure 6 shows the actual difference in voltage data on the surface before starting
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Figure 5. Cross sections given by the solution of the inverse problem after 11 and 23 iterations.
The scale on the bottom shows the values of resistivity in� m−1.

Figure 6. Difference in voltage data on the surface: before starting the inversion and after three,
11, and 23 iterations.

the inversion and after three, 11, and 32 iterations, corresponding to the injection of the
currents, optimal for each particular case. Optimality of the injected current guarantees that
the observed voltage difference is the maximal possible difference for any applied current
possibly generated by the considered system of electrodes.

We can see that even using data of only one current on each iteration, we obtain a
reasonable result of interpretation. Of course, the obtained image is not a unique image of
the true model, but one of the possible solutions which is close to the true solution for the
given noise. Generally, having noise in data of rms errorǫ we can construct an algorithm
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taking into account the data generated by the eigencurrents corresponding to the eigenvalues
exceeding this levelǫ. This will produce a conductivity distribution which is closer to the
true solution, and of course, it will take more computational effort. The algorithm which
we used to show the results of computer simulations and which includes only data of one
current is the least computationally expensive. On each step it calculates only the forward
solution and the electric-field distribution inside the Earth corresponding to the optimal
current, avoiding solution of any system of equations.

The advantage of this method is that it is less computationally expensive compared with
the methods based on usage of all available data.

8. Conclusion

In the present paper a solution of the inverse electric tomography problem for measurements
containing noise is suggested, in which data weights are optimizedvis-à-vis availablea
priori information at the time of the imaging. The part of the conductivity functionσ

which is visible from a noise-free experiment is described in [8] as a subspaceS of L2(�)

spanned by the functions∇ui∇uj . In our notation,S is given by the expression (33).
For measurements containing noise only a part of these projections can be restored.

The eigenvaluesMi of the current-to-voltage mapping show what projections ofσ can be
determined from the data of a given noise level. Hence the spaceS is naturally presented
as a sum of subspacesT1 ∪ T2: the subspaceT1 contains the solutionσ , and the subspace
T2 is such thatσ is orthogonal to all functions spanningT2.

The algorithm for constructing an inverse solution for noisy data provides a conductivity
function from a set of solutions which are equivalent up to the noise level, hence reducing
the problem to an inverse problem of much smaller dimension.
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