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Abstract
This paper deals with the recovery of porosity of bone from measurements of
its effective electrical properties. The microstructural information is contained
in the spectral measure in the Stieltjes representation of the bone effective
complex permittivity or complex conductivity and can be recovered from the
measurements over a range of frequencies. The problem of reconstruction of
the spectral measure is very ill-posed and requires the use of regularization
techniques. We apply the method to the effective electrical properties of
cancellous bone numerically calculated using micro-CT images of human
vertebrae. The presented method is based on an analytical approach and does
not rely on correlation analysis nor on any a priori model of the bone micro-
architecture. However the method requires a priori knowledge of the properties
of the bone constituents (trabecular tissue and bone marrow). These properties
vary from patient to patient. To address this issue, a sensitivity analysis of the
technique was performed. Normally distributed random noise was added to the
data to simulate uncertainty in the properties of the constituents and possible
experimental errors in measurements of the effective properties. The values of
porosity calculated from effective complex conductivity are in good agreement
with the true values of bone porosity even assuming high level errors in the
estimation of the bone components. These results prove the future potential of
electrical impedance spectroscopy for in vivo monitoring of level and treatment
of osteoporosis.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Osteoporosis is defined as an abnormal loss of bone mineral density (hydroxyapatite crystals)
that leads to a deterioration of the bone microstructure and hence a decrease of bone
strength. Today, according to the World Health Organization, bone mineral density (BMD)
measurements is the standard to address the risk of osteoporotic fracture. However, bone
mineral density is only one of the factors affecting bone quality which characterizes the ability
of bone to withstand fracture (Hernandez 2006), and some patients diagnosed with osteoporotic
fractures have the same or greater bone mineral density than a normal patient (Speller et al
1989). This is due to the fact that osteoporosis also involves a loss of structural stability
due to an increase of porosity. This important issue has not yet been addressed successfully.
The current standards in the assessment of osteoporosis are based on photon absorptiometry
techniques (dual x-ray absorptiometry or DXA). Quantitative ultrasound (QUS) measurements
are emerging as an alternative to radiation techniques and they are being used for monitoring
anti-osteoporotic treatments in prospective trials (Prins et al 1998). QUS techniques are safer
and cheaper than radiation techniques. One of the drawbacks of ultrasound techniques in
bone is the fact that sound waves lose energy too fast as they travel through bone and they
do not penetrate it very deep. Recently, electrical measurements done in bovine trabecular
bone samples showed excellent correlations between electric and mechanical properties and
BMD measurements (Sierpowska et al 2003). The authors found that the electric parameters
predicted mechanical characteristics of bovine bone better than the broadband ultrasound
attenuation (BUA) measurements. Dielectric permittivity showed strong linear correlations
with bone mineral density measurements (r = 0.866, p < 0.01 at 50 kHz). Measurements
of electrical properties of trabecular bone were highly reproducible over a wide range of
frequencies, being strongly dependent on the frequency and site. Using numerical simulations,
sensitivity of impedance measurements to bone density variations was shown in Katz et al
(2006). Lately, good correlations between dielectric and mechanical properties of human
trabecular bone were reported (Sierpowska et al 2005). The relative permittivity showed
the strongest linear correlations with Young’s modulus (r = 0.71, p < 0.01) and ultimate
strength (r = 0.73, p < 0.01) at a frequency of 1.2 MHz. Conductivity was found to be a
poor estimate of BMD. Conductivity is due to ion movements through the fluid phase and
may change without any change in mineral density (Williams and Saha 1996). However, both
conductivity and permittivity as well as mechanical properties do depend on the geometry of
the microstructure (Sierpowska et al 2007). These studies indicate the potential of impedance
spectroscopy for the evaluation of bone quality.

The inverse homogenization method developed recently for electromagnetic
measurements allows us to estimate the parameters of the microstructure of a two-component
composite medium using measurements of the effective complex permittivity of the composite
material (Cherkaev 2001). The method is based on reconstruction of the spectral measure in
the Stieltjes analytic representation of the effective permittivity developed in Bergman (1978),
Milton (1980) and Golden and Papanicolaou (1983) for composites with a periodic or random
microstructure. The spectral measure contains all information about the microgeometry. It
was shown in Cherkaev (2001) that the spectral measure can be uniquely recovered from
the measurements of the effective property over a range of frequencies, but the problem of
reconstruction is very ill-posed and requires regularization. After reconstruction of the spectral
function, geometric parameters can be calculated. In particular, the volume fraction of one of
the components in the composite equals the zero moment of the spectral function. Higher order
moments contain further microstructural information (Bergman 1978, Bergman 1993, Golden
and Papanicolaou 1983). This method is valid for a wide range of physical properties such
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Table 1. Recovering bone porosity using several inverse analytic methods that assume an idealized
microgeometry and comparison with the spectral measure method (SMM) proposed here.

Method Ptrue = 92.60 Ptrue = 89.87

IMG 99.31 98.39 98.66 97.25
‖ 99.54 98.90 99.10 98.11
⊥ 74.95 78.24 60.77 67.56
SMM 92.77 92.75 89.67 89.51

as electrical and thermal conductivity, diffusivity, elastic and viscoelastic material properties,
and can be used for composites of periodic or random microgeometry. The method was
successfully applied to the estimation of brine volume in sea ice from measurements of its
complex permittivity in Cherkaev and Golden (1998), where comparison with the laboratory
measurements of the brine volume of sea ice demonstrated an excellent agreement. The
spectral function was reconstructed from effective measurements in Gajdardziska-Josifovska
et al (1989a), Day and Thorpe (1999), Day et al (2000), Cherkaev (2003), Cherkaev and
Zhang (2003), Tuncer (2005) and Zhang and Cherkaev (2008).

A straightforward way to obtain the volume fractions of the components from given
measured effective permittivity and the permittivities of the bone constituents, seems to invert
some of the known mixture formulae. Indeed, an analytic mixture formula which gives
the effective permittivity as a function of permittivity and fractions of the materials in the
composite can be ‘inverted’ to give the volume fractions. However, this approach does not
result in accurate estimates of the volume of the components in the composite. An example of
this inaccuracy was demonstrated in Zhang and Cherkaev (2008) with the ‘inverse Maxwell–
Garnett formula’ applied to effective permittivity values analytically calculated for several
elliptic cylinder microgeometries. The estimated volume fractions ranged from 12.8–26.1 for
true porosity 18%, to 26.5–46.4 for the porosity 35%. In table 1 we summarize the results
of numerical simulations using several inverted for volume fraction analytic formulae, to
demonstrate that this straightforward approach does not work efficiently for the evaluation
of bone porosity. We considered three different idealized microgeometries whose analytic
representation is known: (1) microgeometry idealized as a matrix with spherical inclusions
whose effective permittivity is given by the Maxwell–Garnett formula (MG), (2) laminates with
an interface parallel to the applied field (‖), and (3) a microgeometry consisting of laminates
with an interface perpendicular to the applied field (⊥). We inverted these analytic formulae
to obtain analytic formulae for calculating porosity and applied them to the bone effective
permittivity. We used the effective permittivity values for real bone microgeometry computed
using COMSOL; the forward computation is described in section 4.1. The calculated porosity
estimates are summarized in table 1. The first three rows show estimates obtained using the
inverse analytic formulae: an inverse Maxwell–Garnet formula (IMG) and inverse formulae
for parallel (‖) and perpendicular (⊥) laminates. The last row shows porosity calculated using
the spectral measure method (SMM) proposed here, which does not assume any particular
geometry. The results are shown for two samples with true porosity Ptrue = 92.60 and
Ptrue = 89.87. The two columns under each heading give the porosity calculated using data
at the frequency ω = 10 Hz and ω = 105 Hz. For the SMM method, these columns give
a range of estimated values. The results clearly show that inverse analytic formulae are not
able to provide a good estimate for porosity. This motivates the development of a different
approach to the estimation of volume fractions of constituents in the composite based on
inverse homogenization.
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The technique of inverse homogenization was extended to viscoelastic properties in
Bonifasi-Lista and Cherkaev (2006). Recently, this technique was successfully used to
recover bone porosity from measurements of the effective complex shear modulus of bone
in Bonifasi-Lista and Cherkaev (2008). In this paper, we present the potential of the inverse
homogenization technique to recover the porosity of bone, an important factor besides BMD
measurements in addressing bone quality, from effective complex conductivity measurements.

2. Spectral representation of the effective permittivity of a heterogeneous medium

A Stieltjes function with special analytical properties representing the effective complex
permittivity of a two component composite was introduced by Bergman (1978). The Stieltjes
integral representation can be derived from a spectral representation of an operator using
spectral theory of self-adjoint linear operators, and under certain mathematical conditions it is
unique (Lax 2002). Its general form is as follows:

F(s) =
∫

dη

s − t
, (1)

where s is a complex variable, the spectral function η is a non-negative measure of the
finite total mass on real line. Bergman (1978) determined a spectral representation for the
effective complex permittivity of two-component composite material exploiting the properties
of the effective parameter as an analytic function of the ratio of the component parameters.
The complex variable s was defined in terms of the complex permittivity of the constituents
in the mixture and the function F(s) in terms of the effective complex permittivity of the
heterogeneous medium and the permittivity of one of the constituents. For a two-component
composite, this representation has the following form (Bergman 1978, Milton 1979, Golden
and Papanicolaou 1983, Bergman 1993):

F(s) = 1 − εeff

ε2
=

∫ 1

0

dη(t)

s − t
with s = 1

1 − ε1/ε2
. (2)

Here εeff is the effective complex permittivity of the mixture, and εi, i = 1, 2, is the complex
permittivity of the ith constituent. This analytical representation was used to derive bounds
for the effective complex permittivity of a composite formed of two given materials (Bergman
1978, Milton 1979, Bergman 1980, Milton 1981, Golden and Papanicolaou 1983, Bergman
1985). The representation is valid for other physical properties such as electrical conductivity,
thermal conductivity, diffusivity and elastic properties. The spectral representation (2)
separates information about the properties of the constituents (contained in variable s) from
geometric information about the microstructure which is enclosed in the spectral function η.
This specific feature of the representation (2) allows us to use it to derive information about the
microgeometry (McPhedran et al 1982, McPhedran and Milton 1990, Cherkaeva and Tripp
1996, Cherkaev 2001). The structural information is contained in the moments of the function
η. The nth moment ηn of function η is

ηn =
∫ 1

0
tn dη(t). (3)

Bergman further proved that the zero moment of the measure η gives the volume fraction
of one of the components. Higher order moments give information about the values of the
n-point correlation functions (Bergman 1993); the methods of computing further moments are
discussed in Cherkaev and Ou (2008). The analytical representation (2) does not imply any a
priori model of the microstructure or of the relative arrangement of the constituents and can
be used for any two-component composite.
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Figure 1. Example of a micro-CT scan of a T12 vertebra used in our numerical simulations.
Cavities of trabecular tissue (�2) are filled with bone marrow (�1). Micro-CT images are
courtesy of Professor Yener N Yeni and his group.

We consider cancellous bone as a heterogeneous medium composed of trabecular tissue
with cavities filled with bone marrow (figure 1). We use Maxwell’s equations for spatially
varying time harmonic fields of frequency ω as the equations governing propagation of
electromagnetic fields in the medium

∇ × H(x) = J(x) + iωD(x), ∇ × E(x) = − iωB(x). (4)

Here x is the spatial variable, E and H are the electric and magnetic fields, J is the electric
current field and D and B are, respectively, the displacement and induction fields. These
fields are related by the constitutive equations: D(x) = ε(x)E(x), B(x) = μ(x)H(x), J(x) =
σ(x)E(x), where ε = εoεr is the complex permittivity of the medium, εo is the permittivity
of free space, εr is the relative permittivity, μ is the magnetic permeability and σ represents
the conductivity of the medium. Bone tissues as most biologic conductors have the magnetic
permeability μ close to the permeability μ0 of air (Habal and Reddi 1992). Using constitutive
equations and applying the divergence operator (∇·) on both sides of the first equation in (4),
we obtain for time harmonic fields

∇ · (σ + iωε) E = 0, ∇ × E + iωμ0H = 0. (5)

Combining conductivity and permittivity in complex permittivity ε∗ and complex conductivity
σ ∗

ε∗ = ε − iσ/ω and σ ∗ = σ + iωε = iωε∗ (6)

we rewrite the first of equations (5) in terms of ε∗ or σ ∗, as follows:

∇ · ε∗(x)E(x) = 0 or ∇ · σ ∗(x)E(x) = 0 (7)

Note that for low frequency, the response of material is mostly influenced by the values of
the conductivity parameter and the contribution of the capacitive component (or the dielectric
parameter) is small, whereas for high frequency, the response is determined by the permittivity
and the influence of the conductivity is negligible. Generally, the permittivity ε itself is a
complex function of frequency ω.
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Cancellous bone is a heterogeneous medium; it has a porous structure formed by trabeculae
and filled by bone marrow. Trabecular tissue and bone marrow are characterized by different
values of electric and dielectric parameters; therefore, complex conductivity σ depends not
only on frequency but also on spatial coordinate x. Let function χ = χ(x) be the characteristic
function of domain �1 occupied by bone marrow tissue which takes values 1 if x ∈ �1 and
zero if x ∈ �2, where �2 is the region occupied by the trabecular tissue. Then the spatial
dependence of complex conductivity in the domain � = �1 ∪ �2 can be expressed as
σ ∗(x) = χ(x)σ ∗

1 + (1 − χ(x))σ ∗
2 with σ ∗

i , i = 1, 2, being the complex conductivity of bone
marrow and trabecular tissue, respectively.

The wavelength of the electric current used in clinical applications is much larger than the
scale of the structure of the trabecular bone. Various mechanical models of cancellous bone
have been developed based on homogenization of materials with the microstructure. They are
used in the computations of effective mechanical properties of bone, its static and dynamic
responses (Tokarzewski et al 2001). Since the applied current has a very large wavelength
in comparison with the fine scale bone structure, only an averaged or homogenized response
to the applied electromagnetic excitation can be measured. This situation can be modeled by
assuming that the second term of the second equation in (5) is negligible and the electric field
is curl free. This allows us to represent the electric field as E = ∇φ for some potential φ,
which satisfies the equation

∇ · σ ∗(x)∇φ(x) = 0 in �. (8)

In our numerical simulations, we use equation (8) as the governing equation.
Complex conductivity σ ∗(x) is a spatially oscillating function, and we use the two-scale

asymptotic expansions technique of homogenization theory to derive equations for the effective
complex permittivity. The derivation is presented in appendix A. The effective parameter is
a coefficient of proportionality between the averaged electric current J and averaged electric
field E (Hashin 1972)

〈J〉 = σ ∗
eff〈E〉. (9)

Here, J(x) = σ ∗(x)E(x), and σ ∗
eff is the effective complex conductivity of the trabecular bone

structure. The averaging operator 〈·〉 is the mean operator which for any function f is given
by

〈f 〉 =
∫

�

f (x) dV. (10)

In appendix A, we sketch the derivation of the Stieltjes representation of the effective complex
conductivity of a heterogeneous medium using homogenization theory (two-scale asymptotic
expansion) and spectral decomposition.

In the case considered here, complex variable s depends on the components of the medium,
σ ∗

1 and σ ∗
2 , that are, respectively, the complex conductivity of bone marrow and trabecular

tissue. Expressing s in terms of σ ∗
1 and σ ∗

2 we have

s = σ ∗
2(

σ ∗
2 − σ ∗

1

) = iωε∗
2(

iωε∗
2 − iωε∗

1

) = ε∗
2(

ε∗
2 − ε∗

1

) . (11)

We end up with spectral representation similar to (2)

F(s) = 1 − σ ∗
eff

σ ∗
2

= 1 − ε∗
eff

ε∗
2

=
∫ 1

0

dη(t)

s − t
. (12)

Since complex conductivity σ ∗
i , i = 1, 2, of the constituents of the medium and the effective

complex conductivity depend on frequency ω, the complex variable s and the analytical
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function F(s) depend on frequency as well. Function F(s) can be easily constructed from
experimental data measured for different frequencies. Then, the function η can be recovered
from integral equation (12). Once the spectral function η is reconstructed, the porosity P is
obtained as zero moment of η by (3)

P =
∫ 1

0
dη(t). (13)

The porosity P of bone is understood as the volume fraction of bone marrow.

3. Reconstruction of the spectral measure η

This section discusses a problem of reconstruction of microstructural information and the
spectral function η. The problem of extraction of microstructural information was first
introduced in McPhedran et al (1982); McPhedran and Milton (1990) for the estimation
of volume fraction of one component in a two-component mixture from the measurements
of the effective complex permittivity of the composite material. An analytical approach to
the calculation of volume fraction of one of the materials in the composite was developed
in Cherkaeva and Tripp (1996) and Tripp et al (1998) and extended to the problem of
recovering bounds on the microstructural parameters for isotropic composite materials in
Cherkaev and Golden (1998). This analytical method allows us to estimate the volume
fraction of one component of the mixture exploiting the analytical representation given by (2).
Explicit formulae for the bounds on the volume fraction of one of the constituents are
derived in Cherkaev and Golden (1998). Application of the method to the evaluation of
brine volume from experimentally measured complex permittivity of sea ice in Golden et al
(1998) demonstrated a good agreement of the calculated brine volume with experimentally
measured volume of brine. For a set of data with brine volume p1 = 0.036, the calculated
bounds are 0.0333 � p1 � 0.0422. For the data set with brine volume p2 = 0.0205, the
bounds for the brine volume are 0.0189 � p2 � 0.0213. It was shown in Cherkaev (2001)
that the spectral function η in the integral representation (2) can be uniquely reconstructed if
measurements of the effective properties of the composite are given along some arc on the
complex plane s. Such data can be obtained from measurements in an interval of frequency
provided that at least one of the constituents is frequency dependent (Cherkaev 2001). This
method, called inverse homogenization, was extended to the viscoelastic problem in Bonifasi-
Lista and Cherkaev (2006) and used successfully to recover the porosity of bone from the
measurements of effective shear modulus (Bonifasi-Lista and Cherkaev 2008).

Function η can be reconstructed directly from complex-valued function F(s) using integral
equation (12) or either from a real or imaginary part of it. Separating real and imaginary parts
of function F(s) and using s = x + iy, we obtain

Re(F (s)) =
∫ 1

0

(x − t) dη(t)

(x − t)2 + y2
, Im(F (s)) = −

∫ 1

0

y dη(t)

(x − t)2 + y2
. (14)

The reconstruction problem is equivalent to the inverse potential problem, which is an ill-
posed problem. Practically this means that small variations in the data or computational
noise in a numerical algorithm can lead to arbitrary large variations of the solution. To
construct a regularized solution, the problem is discretized and the minimization problem
is formulated. To deal with the ill-posedness of the problem, we introduce a stabilization
functional which constrains the set of minimizers. We reformulate the problem as an
unconstrained minimization using a Lagrange multiplier. In the case of a quadratic stabilization
functional, the minimization problem takes the following form equivalent to the Tikhonov
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regularization with the regularization parameter α:

min
g∈Rn

{‖Kg − f ‖2
2 + α ‖g‖2

2

}
(15)

Here K is the discretization of a real or imaginary part of F(s) in integral representation (14).
Function f is either a real or imaginary part of F(s) obtained experimentally and g is the
discretization of dη(t). To find the minimizer of the problem, we solve its Euler equation; the
solution is given by

gα = (KTK + αI)−1KTf. (16)

We use the singular value decomposition (SVD) of nonsymmetric matrix K given by

Km×n = Um×m
m×nV
T
n×n. (17)

Here the matrix 
 is a diagonal matrix with diagonal entries si which are the singular values
of K, and matrices U and V are unitary matrices whose column vectors ui and νi are the left
and right singular vectors of K. Using the pseudoinverse K+ of K,K+ = V 
+UT where 
+

is the transpose of 
 in which si are replaced by s−1
i , the solution gα can be expressed in the

form

gα =
m∑

i=1

si

(
uT

i f
)

s2
i + α

vi. (18)

Parameter α is the regularization parameter that determines the weight of each singular
value of K in the reconstruction of gα . Regularized inverse algorithms depend on the
regularization parameter α. The L-curve method (Vogel 2002) was used to choose a proper
value for parameter α. This method consists in plotting the log of the squared norm of
the regularized solution, log(‖gα‖2), against the log of the squared norm of the regularized
residual, log(‖Kgα − f ‖2), for a range of values of the regularization parameter. This curve
typically has an L shape and the proper value of the parameter α corresponds to the corner
of this curve. To find the value of parameter α we use the method of Hansen and O’Leary
(1993) who recommended to pick the point corresponding to the maximal curvature of the
curve. Once the function η is reconstructed, the porosity can be easily recovered by (13).

4. Results of numerical simulations

4.1. Forward problem: simulation of bone effective properties

A series of numerical simulations was performed in order to validate the proposed method.
First, we calculated the effective complex conductivity of a sample of trabecular bone. Then
using these calculated values as data and employing the developed algorithm, we solved
the inverse problem of reconstruction of the spectral function and estimated bone porosity.
Comsol Multiphysics, a finite-element-based program, was used to compute the effective
complex conductivity of a real sample of trabecular bone with geometry obtained from a
micro-CT scan. Micro-CT scans of a T12 vertebra of a 79 year old white male donor were
used to model the micro-architecture of the bone. A micro-CT scan of one of the samples is
shown in figure 1.

In computational experiments we use (8) as the governing equation. As was described
in section 2, the complex conductivity of bone changes on fine scale and can be represented
as σ ∗(x) = χ(x)σ ∗

1 + (1 − χ(x))σ ∗
2 , where σ ∗

i , i = 1, 2, is the complex conductivity of
bone marrow and trabecular tissue, respectively. Then the governing equation for the forward
problem is

∇ · ((
χ(x)σ ∗

1 + (1 − χ(x))σ ∗
2

)∇φ(x)
) = 0. (19)
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The governing equation was implemented using the Comsol FEM code in the frequency
domain and solved for a range of frequencies. The computational domain � = �1 ∪ �2 is
a rectangular box shown as a dashed-line rectangle in figure 1. As boundary conditions, a
drop of potential φ along the x1-axis was applied while the net flux on boundaries along the
x2-axis was kept to zero. Once the spatial distribution of E and J is calculated numerically,
the effective complex conductivity σ ∗

eff can be obtained from (9). The effective properties
calculated in this way are equivalent to experimentally determined macroscopic properties
with boundary conditions of the form φ(x) = A · x, x ∈ ∂(�) for some constant vector A.

The values for complex conductivity of trabecular tissue and bone marrow for these
numerical simulations were obtained from published experimental data in Gabriel et al (1996a,
1996b, 1996c). Complex permittivity properties εi of trabecular bone and bone marrow were
obtained using parametric models described in Gabriel et al (1996c). These parameterized
models are based on Cole–Cole functions given in the frequency domain.

To validate the implementation of the solution of the forward problem for the simulation of
the effective properties in the frequency domain using FEM, we considered a model problem.
In this model simulation, we assume that the structure is composed of a periodic hexagonal
array of circular cylinders embedded in a matrix phase. The unit cell of the cross-section of
this hexagonal microgeometry is shown in figure B1. The structure is formed by periodically
repeating this cell over a large domain and then shrinking this domain to the size of the
domain �. The hexagonal lattice of circular cylinders represents trabecular tissue embedded
in a bone marrow matrix. The effective complex conductivity of this structure is determined
by a method proposed by Perrins et al (1979) who extended an approach of Lord Rayleigh
(1892) to semi-analytically calculate the effective conductivity of circular cylinders arranged
in squared or hexagonal periodic arrays. The method exploits symmetries of the geometry and
is based on matching analytic solutions of problems with constant parameters. A summary
of the derivation of the effective complex conductivity for this hexagonal microgeometry is
presented in appendix B.

For the model simulation, we assume that the cylinders are filled with trabecular material
and bone marrow fills the region outside the cylinders. The volume fraction of the cylinders
is 0.3114 which corresponds to 0.6886 porosity. The effective complex conductivity of
this idealized microstructure was numerically calculated using the FEM Comsol code and
compared with the analytical solution. Figure 2 shows real and imaginary parts of the
effective complex conductivity calculated using these two different methods. The excellent
match between the numerical results and the analytical solution justifies further use of the
numerical method to calculate the effective properties of the bone structure.

To numerically simulate the data for algorithm validation, effective complex conductivity
was determined for four specimens characterized by different microgeometries derived from
real 2D micro-CT images. The effective conductivity was computed for 11 different
frequencies evenly spaced between 101 and 1011 Hz. Figure 3 shows the effective complex
conductivity for one of the specimens.

4.2. Recovery of porosity by solving the inverse problem

The porosity of bone can be recovered from the first moment of the spectral function η

as indicated in equation (3). The spectral function η can be reconstructed from either the
real or the imaginary part of function F(s) by the minimization of functional (15). This
is equivalent to regularization using a Tikhonov filter as given by (18). In this approach, no
a priori assumptions about the geometry of the microstructure is needed. Measurements of the
effective complex conductivity of cancellous bone in a range of frequencies are used as data.
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Figure 2. Effective complex conductivity of the model structure formed by a hexagonal array of
trabecular cylinders embedded in a bone marrow matrix. The analytical solution is shown by a
continuous line and the FEM numerical solution is marked by circles ◦. (a) Real part of complex
conductivity. (b) Imaginary part of complex conductivity.
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Figure 3. Complex conductivity of trabecular bone shown in figure 1. Effective complex
conductivity of bone is marked by circles ◦; conductivity of trabecular tissues is denoted by
squares �; conductivity of bone marrow is indicated by crosses x. (a) Real part of the complex
conductivity. (b) Imaginary part of the complex conductivity.

This can be determined experimentally in vivo or in vitro. However, frequency-dependent
properties of the constituents of cancellous bone (trabecular and bone marrow) are required as
well. There is an undergoing effort to determine and tabulate electrical properties of biological
tissues (Gabriel et al 1996a, 1996b, 1996c). Unfortunately, biological properties are subject
dependent and they can only be approximated with some uncertainty. Moreover, effective
properties can be measured with some experimental error. To simulate this situation and to
address these issues, different normally distributed random functions were added as ‘noise’ to
the complex conductivity properties σ ∗

i of the constituents and to the effective conductivity σ ∗
eff .

Different distributions with zero mean, unit variance and unit standard deviation were used to
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Table 2. Porosity P recovered from the real and imaginary parts of function F(s).

Ptrue PRe(F (s)) PIm(F (s))

0.9260 0.9277 0.9265
0.9257 0.9265 0.9261
0.9245 0.9249 0.9248
0.8987 0.8967 0.8951

Table 3. Porosity P recovered from the real part of function F(s). Noise added to the real part of
complex conductivity is indicated in % of noise (mean ± standard deviation).

Ptrue PRecovered Noiseσ2 Noiseσ1 Noiseσ∗
eff

0.9260 0.9544 3.74 ± 2.98 3.89 ± 2.67 1.85 ± 1.48
0.9260 0.9459 14.55 ± 13.77 16.51 ± 14.07 3.08 ± 2.43
0.9260 0.9323 33.45 ± 28.20 28.60 ± 12.81 2.89 ± 2.55
0.9260 0.9119 42.88 ± 29.38 29.33 ± 26.29 2.52 ± 1.87

0.9257 0.9150 8.14 ± 4.75 6.11 ± 4.86 2.25 ± 1.79
0.9257 0.9271 17.13 ± 15.03 17.11 ± 11.17 2.01 ± 1.93
0.9257 0.9260 26.76 ± 22.56 26.69 ± 11.95 3.38 ± 2.97
0.9257 0.9578 30.61 ± 14.816 23.65 ± 21.38 2.75 ± 2.10

0.9245 0.9195 2.43 ± 1.99 2.93 ± 1.57 2.41 ± 1.68
0.9245 0.9008 12.21 ± 7.13 9.17 ± 7.30 2.25 ± 1.78
0.9245 0.9146 28.30 ± 20.76 38.08 ± 23.92 2.05 ± 1.99
0.9245 0.9586 44.77 ± 24.89 33.94 ± 23.44 1.69 ± 2.12

0.8987 0.8956 2.43 ± 1.99 2.93 ± 1.57 2.41 ± 1.68
0.8987 0.8987 8.14 ± 4.75 6.11 ± 4.86 2.24 ± 1.78
0.8987 0.9312 21.52 ± 19.86 30.02 ± 13.37 2.49 ± 1.86
0.8987 0.9215 22.34 ± 19.61 25.67 ± 16.75 2.01 ± 1.93

model the uncertainty in the real and imaginary parts of the properties of the constituents and
possible experimental errors in the measurements of effective properties. The reconstruction
algorithm developed in section 3 was implemented in Matlab to recover the spectral function
η. Then, porosity P of bone was calculated using (13). We want to emphasize that the
term ‘noise’ means error added to the values of the properties used in the inversion algorithm
presented in section 3 to account for possible uncertainty in the estimation of the conductivity
of the bone components and measurement error.

4.3. Results and discussion

Table 2 shows the recovered porosity for four different specimens of trabecular bone, similar to
that whose micro-CT image is shown in figure 1. The specimens have slightly different porosity
shown in the left column of the table. True porosity of the sample was determined digitally
from the micro-CT scan. The next two columns contain values of porosity reconstructed from
the effective complex conductivity using the algorithm presented. The values of complex
conductivity in this case are transformed to the function F(s), and the real and imaginary parts
of function F(s) are used as an input for the algorithm. This series of simulations uses data
without any additional noise added; only computational noise is present. This corresponds
to the case when measured effective conductivity has no (or very small) experimental error
and complex conductivity of trabecular tissue and bone marrow are known exactly. The table
separately shows the porosity reconstructed from the real and imaginary parts of function
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Table 4. Porosity P recovered from the imaginary part of function F(s). Noise added to the
imaginary part of complex conductivity is given in % of noise (mean ± standard deviation).

Ptrue PRecovered Noiseσ2 Noiseσ1 Noiseσ∗
eff

0.9260 0.9151 4.71 ± 3.29 5.17 ± 3.4 1.92 ± 2.04
0.9260 0.9026 13.89 ± 13.30 14.17 ± 9.21 1.88 ± 1.52
0.9260 0.9290 17.78 ± 14.27 27.95 ± 14.96 2.75 ± 1.68
0.9260 0.8828 29.25 ± 26.55 33.68 ± 27.39 2.45 ± 1.78

0.9257 0.9367 6.46 ± 4.37 9.23 ± 6.58 2.83 ± 1.97
0.9257 0.9189 15.53 ± 10.21 9.61 ± 10.21 2.51 ± 1.52
0.9257 0.9317 13.63 ± 10.94 22.36 ± 11.97 2.75 ± 1.68
0.9257 0.9190 15.53 ± 10.21 9.61 ± 10.21 3.34 ± 2.02

0.9245 0.9328 10.35 ± 6.80 6.40 ± 6.80 2.51 ± 1.52
0.9245 0.9015 13.89 ± 13.30 17.71 ± 11.52 1.88 ± 1.52
0.9245 0.9146 20.75 ± 16.65 33.54 ± 17.96 2.75 ± 1.68
0.9245 0.9099 31.14 ± 21.28 30.91 ± 21.53 1.47 ± 0.90

0.8987 0.8896 3.48 ± 1.95 3.67 ± 3.11 2.10 ± 1.30
0.8987 0.9298 6.46 ± 4.37 9.23 ± 6.57 2.83 ± 1.97
0.8987 0.8998 15.53 ± 10.21 9.61 ± 10.21 2.51 ± 1.52
0.8987 0.8849 13.89 ± 13.30 17.71 ± 11.52 1.89 ± 1.52

Table 5. Porosity P Re(F (s)) recovered from the real part of function F(s) for data sets consisting
of five data points. Noise added to the complex conductivity values is indicated in % of noise
(mean ± standard deviation).

PTrue P Re(F (s)) NoiseRe(σ1) NoiseIm(σ1) NoiseRe(σ2) NoiseIm(σ2) NoiseRe(σ∗)

0.9257 0.9339 0 0 0 0
0.9257 0.9188 4.36 ± 2.23 3.29 ± 2.97 5.28 ± 4.68 3.64 ± 3.15 2.78 ± 2.34
0.9257 0.9591 7.68 ± 5.05 10.39 ± 7.95 7.80 ± 4.28 5.39 ± 4.38 2.76 ± 2.44
0.9257 0.9386 12.64 ± 10.91 15.95 ± 11.59 12.70 ± 9.82 13.63 ± 8.57 2.14 ± 1.92
0.9257 0.9303 20.32 ± 14.41 8.68 ± 7.85 7.97 ± 6.62 16.30 ± 12.45 4.13 ± 3.44
0.9257 0.9221 12.97 ± 8.78 16.82 ± 10.60 15.81 ± 12.26 14.16 ± 9.92 2.83 ± 1.90

F(s) in the columns with headings PRe(F(s)) and PIm(F(s)). Results of numerical reconstruction
presented in the table show that in this case, the porosity is recovered very accurately with an
error less than 0.1%.

Tables 3 and 4 show porosity recovered from the real and imaginary parts of function F(s)

constructed from the data containing noise. Noise levels are reported as a mean and standard
deviation over a range of frequencies for each specimen. Horizontal lines separate results for
different samples. Results of computational experiments show stability of the reconstruction.
Even with high level noise in the simulated data, the recovered values of porosity are close to
the true values.

The previous results were obtained using 11 data points in a 10 − 1011 Hz frequency
range. The next series of computations was performed to verify that a smaller data set would
be sufficient to use in reconstruction. We used 4, 5 or 6 data points in the range from 10 Hz to
1 MHz with satisfactory accuracy. Table 5 shows bone porosity recovered from effective data
given at five frequencies. The numerical simulations confirm that even such a small data set
provides sufficient information for stable reconstruction of porosity values.

Solutions reconstructed using the regularization technique, depend on the regularization
parameter α which was chosen using the L-curve method. Figure 4 shows a typical curvature
curve (left figure) and a L-shaped curve (right figure) corresponding to the reconstruction
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Figure 4. Example of curvature and L-shaped curves calculated in inversion of the real part of
function F(s). PTrue = 0.8987 and Precovered = 0.8609; noise levels of 20.35 ± 11.88, 12.22 ±
9.72 and 2.24 ± 1.78 for σ2, σ1 and σ ∗

eff , respectively. (a) Curvature κ versus the regularization
parameter α; star * marks the point of maximum of the curvature and corresponds to a recovered
porosity of 0.86. (b) Euclidean norm of solution ‖m‖2 versus the Euclidean norm of the residual
‖Km − f ‖2 in the logarithmic scale; star * denotes the point corresponding to the maximum
curvature.
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Figure 5. Reconstructed function dη(t) corresponding to point of maximum curvature for example
given in figure 4.

algorithm for the real part of F(s). The porosity recovered for the regularization parameter
corresponding to the point of maximal curvature is close to the true porosity even though the
properties of the constituents contained a mean error of 20% and 12%, respectively. For this
particular case, figure 5 shows the reconstructed function dη calculated for the regularization
parameter corresponding to maximal curvature. The reconstructed function dη is very smooth
without discontinuities or big jumps as is expected for solutions constructed using this type of
regularization.
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We note that healthy cancellous bone has porosity levels between 30% and 60% depending
on the type of bone and around or above 90% for osteoporotic bone (Qin et al 2007). In
compact bone, studies have shown an increase of porosity of 41% in fracture cases compared
with healthy ones (control group) (Bell et al 1999). The results of numerical simulations show
that even with high percent of error in the estimation of properties of the constituents, the
algorithm was able to recover an accurate approximation of the true porosity of bone with an
error of 2–3%. This justifies our conclusion that the developed method has sufficient accuracy
to register porosity levels relevant to osteoporosis.

5. Conclusions

In this paper, we have shown the potential of using the spectral representation of effective
properties in recovering bone porosity. This representation is analytical; it does not depend
on correlation analysis. Conventional approaches either rely on correlation analysis or require
a forward model of the micro-architecture of bone in terms of relevant parameters such as
constituents, relative volume fractions and geometrical parameters. It is extremely difficult to
create accurate forward models of the morphology of a heterogeneous medium such as bone.
The spectral representation however is unique and does not require any model of the bone
morphology.

The spectral function can be used to find the effective behavior of heterogeneous material,
it also contains important information about the microgeometry of bone such as volume
fraction of constituents. In this work, we have shown the future potential of the spectral
function to help to understand and address issues of clinical relevance such as porosity levels
in bone. We developed a method which allows us to derive bone porosity from experimental
measurements of complex conductivity over a range of frequencies. On the other hand,
exploitation of the rich information enclosed in the spectral representation is not simple.
It requires to use regularization techniques to deal with numerical instabilities due to the
ill-conditioned character of the problem. A numerical scheme involving the regularization
method depends on a regularization parameter α. The success of the method is determined by
the ability to choose an appropriate value for parameter α. The L-curve criterion is a common
method used to adjust the regularization parameter when Tikhonov filters are employed. We
have shown that this criterion works well for the current problem even with a large level of
noise in the numerically simulated data. The presented method has been validated using 2D
micro-CT scans of trabecular bone. However, the method is completely general and valid
for a three-dimensional problem. This study shows the potential of electrical spectroscopy to
address porosity levels in bone for monitoring anti-osteoporotic treatment.
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Appendix A

In this section, we will derive the Stieltjes representation of the effective complex conductivity
of a heterogeneous medium using homogenization theory (two-scale asymptotic expansion).
To model fine scale bone properties we introduce a small parameter ε characterizing the
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structure on the microscale. We start with the equation in terms of the complex conductivity
tensor in the Fourier domain given in (7) and rewritten here as

div σ εEε = 0. (A.1)

To simplify the notation, we have dropped the star symbol for the complex conductivity
and used notation div for the divergence operator (∇·). It is assumed that the distribution
of the heterogeneities is periodic on the microscale. We introduce another spatial variable
y to characterize the distribution of the heterogeneities on the fine scale, y = x/ε, so that
σ ε(x/ε) = σ(y). Here ε is a small positive parameter such that the complex conductivity
σ ε is now a known periodic function of periods Y and εY in the microscopic (y-scale) and
macroscopic (x-scale) scales, respectively. We look for an asymptotic solution for (A.1) of
the form

φε(x) = φ(x, y) = φ0(x) + εφ1(x, y) + ε2φ2(x, y) + · · · . (A.2)

The electric field Eε can be written in terms of a potential function φε as Eε = ∇φε . The
divergence div and gradient ∇ operators are expressed as

div = 1

ε
divy + divx ∇ = 1

ε
∇y + ∇x. (A.3)

Using these expressions, we obtain asymptotic expansions for the electric field Eε and for the
current density field Jε . The expansion for the electric field is of the form

Eε
j = E0

j + εE1
j + ε2E2

j + · · · (A.4)

where Ej represents the j th component of vector E, and

En
j = ∂

∂xj

φn +
∂

∂yj

φn+1 for n = 0, 1, 2, . . . . (A.5)

For the current density field, Jn = σEn for n = 0, 1, 2, . . . , and the expansion has the form

J ε
i = J 0

i + εJ 1
i + ε2J 2

i + · · · . (A.6)

Substituting the asymptotic expansions given by (A.6) into (A.1) and taking the limit as
ε → 0, we obtain two problems at different scales. The problem at the macroscale (ε0) is

divxJ
0 + divyJ

1 = 0. (A.7)

At the microscale (ε1), we have the local problem

divyJ
0 = divy

(
σ
(∇xφ

0 + ∇yφ
1)) = 0. (A.8)

The solution of the local problem is given by

φ1(x, y) = −
3∑

j=1

�j(y)
∂

∂xj

φ0 + A(x), (A.9)

where A(x) is a constant function in the y scale. Function �(y) = (�1,�2,�3) is a Y-periodic
function, and each component �k satisfies the following variational problem:∫

Y

σ∇y�k · ∇y� dy =
∫

Y

σ∇y� dy (A.10)

for every periodic function �(y) that belongs to a local Sobolev space VY of periodic functions
with zero average over the periodic cell. More explicit mathematical details can be found in
chapter 7 in Cioranescu and Donato (1999). Using periodicity conditions and applying the
divergence theorem, we obtain from (A.10)

divy(σ∇y(�k + yk)) = 0 for k = 1, 2, 3. (A.11)
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Here σ is the second-order tensor of the complex conductivity properties of the heterogeneous
material. In numerical simulations, we assume that the heterogeneous material is transversely
isotropic in the y-scale with y3 being the axis of symmetry, so that σ11 = σ22. Using the fact
that σ(y) = hχ(y) + (1 − χ(y)) where χ is the characteristic function of the composite and
h = σ1/σ2 with σi being the complex conductivity of material i, equation (A.11) is reduced to

∇y · χ(∇y�k + ek) = s�y�k. (A.12)

Here s = 1/(1 − h) and ek is the unit ort along the axis yk . Then, using algebra manipulation,
we obtain from (A.12)

E = s(sI + �χ)−1ek, (A.13)

where � = ∇y(−�)−1∇y and � is the Laplace operator with respect to y. Using the spectral
resolution of operator �χ and assuming that σeff is the kk th component of the measured tensor
of effective properties, we obtain the spectral representation for the function F(s)

F (s) = 1 − σeff(s)

σ2
=

∫ 1

0

dη(z)

s − z
. (A.14)

In Golden and Papanicolaou (1983) and Cherkaev (2001), more detailed steps of the derivation
are provided.

Appendix B

In this section, we will outline a semi-analytical method to calculate the effective properties
of cancellous bone for an idealized microstructure formed by the hexagonal lattice of circular
cylinders of radius a and conductivity σ2 embedded in a matrix of conductivity σ1. A
two-dimensional cross-section of this structure is shown in figure B1. The effective complex
conductivity of the cancellous bone’s idealized structure is determined with a method proposed
by Perrins et al (1979).

Symmetries of the geometric structure allow us to reduce the consideration to a 2D
problem. We consider a coordinate system (x1, x2) with the origin located at point P (see
figure B1). The governing equation (8) is given for inhomogeneous conductivity σ ∗(x)

∇ · (σ ∗∇φ) = 0 in �, σ ∗(x) = χ(x)σ ∗
1 + (1 − χ(x))σ ∗

2 . (B.1)

Here σ ∗(x) is the inhomogeneous conductivity in the domain � = �1 ∪ �2, σ ∗
i is the

conductivity of phase i and χ(x) is the characteristic function of the domain �1 so that it
takes value 1 if x is in phase 1 and 0 otherwise, x = (x1, x2). The governing equation can be
rewritten as

∇ · (
σ ∗

1 ∇U1
) = 0 in �1, ∇ · (

σ ∗
2 ∇U2

) = 0 in �2. (B.2)

For a constant electric field E0 applied in the x1 direction, the solution of the problem for a
unit hexagonal cell can be reduced to the solution of the Laplace equation inside and outside
of the cylinder. In the polar coordinate system (r, θ), the problem has a solution in terms of
Fourier expansions as

φ(r, θ) =
{

U1(r, θ), if r > a,

U2(r, θ), if r < a
(B.3)

where outside the cylinder, for r > a, Fourier series for U1 has the form

U1(r, θ) = A0 +
(
A1r + B1r

−1
)

cos θ +
(
A3r

3 + B3r
−3

)
cos 3θ + · · · (B.4)
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Figure B1. 2D section of the hexagonal cylindrical structure used in model simulations to validate
the computation of the effective properties of trabecular bone. Cylinders represents trabecular bone
tissue embedded in a matrix (bone marrow phase). The overall symmetry in 3D is transversely
isotropic.

and inside the cylinder, for r < a, Fourier series for U2 is

U2(r, θ) = C0 + C1r cos θ + C3r
3 cos 3θ + · · · . (B.5)

Boundary conditions at the interface (r = a) are given by the continuity of the electrical and
the displacement fields

U1(a, θ) = U2(a, θ), γ
∂U2(a, θ)

∂n
= ∂U1(a, θ)

∂n
, (B.6)

where γ = σ ∗
2

/
σ ∗

1 .
Boundary conditions can be used to work out relations between the coefficients of the

Fourier expansions (B.4) and (B.5). The contribution to the potential φ(x1, x2) at the point
(x1, x2) due to the multiple inclusions (excluding the cylinder at P) is given by the cosine
series (B.4) corresponding to the series

A0 + (A1 − E0)(x1 + ix2) + A3(x1 + ix2)
3 + · · · . (B.7)

An equivalent expression might be obtained if we sum up all contributions of the other cylinders
with centers at Qn,Qn �= P∑

Qn

(B1(x
′
1 + ix ′

2)
−1 + B3(x

′
1 + ix ′

2)
−3 + · · ·), (B.8)

where x ′
1 and x ′

2 are the coordinates of the same point (x1, x2) referred to the center Qn of
the corresponding cylinder. Equivalence of expressions (B.7) and (B.8) results in a system of
equations which together with equations (B.6) gives us a relation between E0 and B1 (Lord
1892). For a hexagonal array of cylinders, it is convenient to use the symmetry of the structure
and consider two additional fields in the directions (−1/2,−1/2

√
3) and (−1/2, 1/2

√
3), so

that the total field is zero (Perrins et al 1979). If U1(r, θ) is the potential due to E0, then
U1(r, θ) + U1(r, θ + 2/3π) + U1(r, θ + 4/3π) = 0. Using expression (B.4), we find∑

l

(
Alr

l + Blr
−l

)
cos lθ(1 + 2 cos 2/3πl) = 0. (B.9)
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This relation together with equivalence between (B.7) and (B.8) results in the following system
of linear equations for the coefficients B2n−1

E0δn1 − (2n − 1)!
(1 + γ )B2n−1

(1 − γ )a4n−2
=

∑
m=1,2,...

(2n + 2m − 3)!

(2m − 2)!
S2n+2m−2B2m−1, (B.10)

where δn1 is the Kronecker delta symbol, a is the radius of the cylinders. In (B.10), Sl is given
by

Sl =
∞∑

j=1

(
x

(j)

1 + ix(j)

2

)−1
, (B.11)

where
(
x

(j)

1 , x
(j)

2

)
are the coordinates (x1, x2) of the center of the j th cylinder for all

cylinders except that centered at point P. Applying the second Green’s identity to the unit cell
(figure B1) we obtain the effective conductivity property given by

σ ∗
eff = 1 − 4π

B1√
3
E0 (B.12)

and B1 is determined by solving (B.10).
Note that the effects of porosity in the effective conductivity are introduced into the

equation through the Fourier coefficient B1; indeed, the system of linear equations (B.10)
depends on the radius a of the cylinders. The solution of this system also depends on the ratio
of the properties γ, and hence the effective complex conductivity also depends on frequency
if the constituents of cancellous bone have frequency-dependent conductivity values.
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