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Abstract The article presents a numerical inversion
method for estimation of quality Q factor and phase
velocity in linear, viscoelastic, isotropic media using
reconstruction of relaxation spectrum from measured
or computed complex velocity or modulus of the
medium. Mathematically, the problem is formulated
as an inverse problem for reconstruction of relaxation
spectrum in the analytic Stieltjes representation of
the complex modulus using rational approximation.
A rational (Padé) approximation to the relaxation
spectrum is derived from a constrained least squares
minimization problem with regularization. The recov-
ered stress-strain relaxation spectrum is applied to nu-
merical calculation of frequency-dependent Q factor
and frequency-dependent phase velocity for known an-
alytical models of a standard linear viscoelastic solid
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(Zener) model as well as a nearly constant-Q model
which has a continuous spectrum. Numerical results for
these analytic models show good agreement between
theoretical and predicted values and demonstrate the
validity of the algorithm. The proposed method can be
used for evaluating relaxation mechanisms in seismic
wavefield simulation of viscoelastic media. The con-
structed lower order Padé approximation can be used
for determination of the internal memory variables in
time-domain finite difference numerical simulation of
viscoelastic wave propagation.
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1 Introduction

This paper presents a novel approach to forward and
inverse modeling of the quality factor Q and the relax-
ation spectrum using low-order Padé approximation.
We consider a homogeneous isotropic one-dimensional
(1D) viscoelastic medium in which the material physi-
cal properties are spatially independent. The problem
is formulated as an approximation of the relaxation
spectrum based on rational (Padé) approximation of
the Stieltjes representation of the complex modulus.
The constructed Padé approximation is used to extract
relaxation parameters (spectrum) of the medium and
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to estimate the phase velocity in linear, viscoelastic,
isotropic media. The data are provided by frequency-
dependent measured or simulated values of complex
velocity or complex modulus. Using the recovered
stress-strain relaxation parameters, the quality Q factor
and phase velocity of wave propagating in such vis-
coelastic medium can then be calculated. A numerical
method of construction of the Padé approximation is
based on a constrained least squares minimization, reg-
ularized by the constraints derived from the analytic
Stieltjes representation of the complex modulus. Solu-
tion of the constrained minimization problem gives us
coefficients of the rational approximation to the relax-
ation spectrum of the medium. This rational approx-
imation is transformed into Padé approximation by
partial fraction decomposition. The method can use as
input data the values of measured, simulated, or desired
complex velocity or modulus in a certain interval of
frequencies. The recovered lower order rational ([p, q]-
Padé) approximation can be used for determination
of the internal memory variables in time-domain finite
difference (TDFD) numerical simulation of viscoelastic
wave propagation.

Our longterm goal is to combine this technique
with finite difference (FD) modeling to give an al-
ternative formulation for numerical simulation of vis-
coelastic wave propagation. The present approach also
suggests a new simultaneous inversion technique for
estimation of the frequency-dependent complex veloc-
ities, Q factors and phase velocities in anelastic media
from vertical seismic profile (VSP) data in geophysics
prospecting.

The paper is organized as follows: Section 2 gives a
brief review of the relevant literature. Section 3 intro-
duces an analytic representation of complex modulus
and derives a discrete partial fraction approximation of
complex modulus for inverse modeling of quality factor
Q and estimation of the frequency-dependent phase
velocity. We derived an error estimate of the proposed
approximation method, which is given in the Appendix.
A new numerical algorithm of rational (Padé) approx-
imation to the relaxation spectrum of the medium is
presented in Section 4. In Section 5, we derive the
analytic representations for a standard linear viscoelas-
tic solid (Zener) model and for a viscoelastic model
with continuous spectrum. These representations are
used in the next section to numerically demonstrate
the efficiency of the method. Numerical experiments
of approximation of the relaxation spectrum for known
analytic viscoelastic models and the calculated esti-
mates of Q factors and phase velocities are shown in
Section 6.

2 Literature review

The analytical Stieltjes integral representation of the
complex modulus in a linear isotropic viscoelastic mate-
rial was first introduced in [12] for modeling of internal
memory variables in the TDFD calculations of plane-
wave propagation through a constant Q medium. The
complex viscoelastic modulus characterizing the atten-
uation and dispersion effects of a viscoelastic medium
was modeled using Padé approximations in the fre-
quency domain. The method of construction of Padé
approximations was based on finding the zeros of or-
thogonal polynomials to determine the poles of the
rational approximate for a constant relaxation spec-
trum (see section 3.2 of Day’s paper) and deriving
Padé approximation of the stress-strain relation. The
viscoelastic stress-strain relation in the time domain
was transformed into a differential form by introducing
internal memory variable functions. This results in a
system of first-order differential equations for the un-
known internal variable functions to be solved together
with the wave equation of motion in viscoelastic wave-
field numerical simulations. The approach developed
in [12] can be viewed in the time-domain as the re-
placement of the convolution operator by a low-order
differential operator. The memory variable technique
developed in [12] provides a powerful tool for the
incorporation of anelasticity into numerical wave prop-
agation methods. Such methods include FD methods
[15, 24, 30], hybrid methods [17], and Fourier or Cheby-
shev pseudo-spectral techniques [7, 8, 23, 31] for seismic
wave modelling in realistic (complex) media.

The accuracy of wave propagation through an atten-
uating medium simulated using the introduced internal
variables, depends on how the time-dependent relax-
ation function of stress-strain is modeled. Rheological
models such as the Generalized Maxwell Body (GMB)
model and the Standard Linear Solid (SLS) model are
commonly used in numerical simulations of viscoelastic
wave field [5, 16, 39], they describe the stress-strain
relation as a convolution of a linear combination of re-
laxation functions in the time domain. The behavior of
each single relaxation function is controlled by constant
coefficients of a weight factor and a relaxation time.
The GMB and SLS models are completely specified
by the number of relaxation functions associated with
these constant coefficients based on the requirement
that the quality factor Q, which is usually formulated
as a function of temporal frequency, must be nearly
constant within an assigned frequency band. However,
the number of different relaxation functions is propor-
tional to the number of the introduced internal memory
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variables, this directly affects the computer storage and
computation time of TDFD numerical calculations. In
order to reduce the computation cost, [13, 14] proposed
a coarse-grained method by using only one memory
variable for each stress component of each node. The
stability and analysis of the coarse-grain viscoelastic
simulation was given in [21].

Attenuation and dispersion of a viscoelastic medium
are often characterized by a quality factor Q. Many
algorithms to estimate Q factor and phase velocity have
been published. An inversion method for estimating
frequency-dependent phase velocities and frequency-
dependent Q factors in anelastic medium from both
synthetic and real zero-offset VSP data acquired in a
medium with plane horizontal layers was developed
in [1]. Techniques using spectral method for estima-
tion of quality Q factors from surface seismic common
midpoint gathers (surface seismic reflection data) were
presented in [11, 40]. A Gabor deconvolution algorithm
to correct reflection seismograms for the effects of
elastic attenuation and source signature has been devel-
oped in [27, 28]. An extensive comparison of different
techniques of the frequency-dependent attenuation of
seismic waves from VSP data has been investigated in
[33, 35] and numerical comparison of seismic plane-
wave dispersion and attenuation models has been re-
ported in [34]. Computation techniques for stabilizing
inverse Q filtering were studied in [36, 37, 41]. Efficient
modeling of Q factors for 3D TDFD simulation of wave
propagation was developed in [25].

3 Analytic representation of viscoelastic modulus

We consider a plane compressional wave propagating
in a homogeneous isotropic dissipative medium with
constant material properties. The equation of motion
and the relation between stress σ and strain ε for 1D
linear viscoelastic media are represented by

�
∂2u
∂t2 = ∂σ

∂x
, (1)

and

σ = M ∗ dε =
∫ t

−∞
M(t − τ)dε(τ ), ε = ∂u

∂x
(2)

where � is the mass density, u(x, t) is the displacement,
M(t) is the relaxation function or medium modulus.

In the frequency domain, the relation between stress σ

and strain ε in (2) can be formulated as

σ(ω) = M(ω)ε(ω) (3)

where M(ω) is the complex viscoelastic modulus and ω

is the angular frequency. The complex velocity and the
phase velocity in an attenuating medium are given by
(see (2.80) & (2.83), p. 61 in ref. [9])

V(ω) =
√

M(ω)

�
(4)

and

1
c(ω)

= Re

[(
�

M(ω)

)1/2
]

(5)

respectively, where � is the density of the medium. The
dimensionless quality factor Q as a function of ω is
defined as

Q(ω) = ReM(ω)

ImM(ω)
= cot θ(ω) (6)

where θ(ω) is the phase of M. M(ω) is uniquely de-
termined by a given Q(ω) in a causal medium since
ReM and ImM must obey Kramers–Kronig dispersion
relations (see (2.70) and (2.72) in [9]). The quality
Q factor characterizes the phase delay between the
oscillating stress and strain. In seismic applications, the
quality factor Q is normally assumed to be frequency
independent or only slowly varying with frequency [22].
The Q factor is commonly used for evaluating the
absorbtion and attenuation of the seismic wave.

Recall the integral expression for the viscoelastic
modulus M (see (8) in [12])

M(ω) = MU − δM
∫ ∞

0

dη(x)

iω + x
(7)

where dη(x) = �(−lnx)dx and the imaginary unit i =√−1. The non-negative distribution �(lnτ) is called
the normalized relaxation spectrum of the medium with
τ = x−1 being the relaxation time. Here, MU is the
unrelaxed modulus and δM is the relaxation of the
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modulus. In terms of M(ω), it is seen from (7) that MU ,
the relaxed modulus MR, and δM are given by

MU = lim
ω→∞ M(ω), MR = lim

ω→0
M(ω), δM= MU − MR.

(8)

This results in the following normalization of the func-
tion η:

Proposition 1 [12] The function η has the following
property (sum rule)

∫ ∞

0

dη(x)

x
= 1. (9)

The justification of this proposition easily follows
from Eqs. 5 to 9 in [12] with the change of variable
x = τ−1.

It is convenient to introduce a new complex vari-
able s = iω and define a new function G(s) = (MU −
M(s/i))/δM which is the integral part of the complex
modulus M(ω) defined in (7). The function G can be
written as

G(s) = MU − M(s/i)
δM

=
∫ ∞

0

dη(x)

s + x
, s ∈ C \ (−∞, 0)

(10)

where η is the non-negative measure on [0, ∞) which
characterizes the relaxation spectrum of the medium.
The function G(s) is analytic outside the negative real
semiaxis in the complex s-plane, all its singular points
are in the interval (−∞, 0). The real-valued function
η(x) is uniquely determined if it is chosen such that

η(x) = η
(
x+)

, η(0) = 0, (11)

and it can be obtained from the function G by the
Stieltjes inversion formula [38]

η(x)= η
(
x+) + η

(
x−)

2
=− 1

π
lim

y→0+

∫ x

0
Im G(−ν + iy)dν.

(12)

Equation 10 is a Stieltjes analytic representation of
the viscoelastic modulus similar to the analytic integral
representation of the effective complex permittivity
which was developed for computing bounds for the
effective permittivity of an arbitrary two-phase com-
posite [3, 4, 19, 29]. The uniqueness of reconstruction

of the spectral measure in the analytic Stieltjes rep-
resentation of the effective complex permittivity was
discussed in [10] where it was shown that the spectral
measure can be uniquely recovered if measurements
of the effective property are available on an arc in
a complex plane. Because the complex velocity V(ω)

in (4) or complex viscoelastic modulus M(ω) in (7) is
frequency dependent, the measurements of V(ω) or
M(ω) at certain frequencies should be able to provide
the desired data set.

Based on the theory of reconstruction of the spectral
measure developed in [10] and the approach to recon-
struction of the spectral measure of effective permit-
tivity of a composite material using rational function
approximations in [42, 43], the function η(x) can be
approximated by a step function with a finite number
of steps, so that

dη(x) � dη̂(x) =
q∑

n=1

Anδ (x + ρn) dx. (13)

For An > 0 and ρn < 0 where −∞ < ρq < ... < ρ2 <

ρ1 < 0, the function η(x) satisfying (11) can be approx-
imated by

η(x) =
∫ x+

0
dη(t) �

∫ x+

0
dη̂(t)

=
∫ x+

0

q∑
n=1

Anδ(t + ρn)dt

=
q∑

n=1

An

∫ x+

0
δ(t + ρn)dt (14)

so that

η(x) � η̂(x) =
q∑

n=1

An H(x + ρn), (15)

where H(x) is the Heaviside step function. The function
η(x) defined for x ∈ [0, ∞) is a non-decreasing, non-
negative function corresponding to the Stieltjes func-
tion G(s). Thus, the approximation Ĝ(s) of the function
G(s) is given by

G(s) � Ĝ(s) =
q∑

n=1

An

s − ρn
, (16)

with constraints

−∞ < ρn < 0, 0 <
An

|ρn| < 1,
∑ An

|ρn| = 1. (17)

Here ρn is the n-th simple pole on the negative real
semiaxis with positive residue An, q is the total num-
ber of poles. It follows from (10), (13), and (16) that
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the approximation of the complex modulus M(ω) is
given by

M(ω) � MU − δM
q∑

n=1

An

iω − ρn
. (18)

Equation 18 gives an expression of discrete approxima-
tion of the complex modulus M(ω) in a partial fraction
form. The real parameters An and ρn in this repre-
sentation contain all information about the relaxation
spectrum of the medium. It follows from (6) and (18),
that the quality Q factor, the complex velocity V(ω)

and the phase velocity c(ω) can be estimated in terms
of An and ρn as

Q(ω) �
Re

[
MU − δM

q∑
n=1

An/(iω − ρn)

]

Im

[
MU − δM

q∑
n=1

An/(iω − ρn)

] , (19)

V(ω) � Vc(ω) = 1√
�

{
MU − δM

q∑
n=1

An

iω − ρn

} 1
2

(20)

and

c(ω) � 1
ReVc(ω)

, (21)

respectively.
The partial fraction approximation (18) for the com-

plex modulus M(ω) implies the relationship between
the stress σ and strain ε in the time domain as shown
in [12] as

σ(t) = MU

[
ε(t) −

q∑
n=1

ζn(t)

]
(22)

where ζn (n = 1, 2, ..., q) are the internal memory vari-
ables which satisfy the first-order differential equations
[12, 16, 24]

dζn(t)
dt

− ρnζn(t) = An
δM
MU

ε(t), (n = 1, 2, ..., q). (23)

Equation 22 represents the stress σ as a sum of the
elastic part MUε(t) and an anelastic part given by the in-
ternal memory variable functions ζn(t) (n = 1, 2, ..., q).

Substituting Eqs. 22–23 into Eqs. 1–2 results
in the system of governing differential equations
[16, 24, 44]

�
∂2u
∂t2 = MU

[
∂2u
∂x2 −

q∑
n=1

ϑn(x, t)

]
(24)

where ϑn(x, t) = ∂ζn

∂x
(x, t) satisfies

dϑn

dt
− ρnϑn = An

δM
MU

∂2u
∂x2 , (n = 1, 2, ..., q). (25)

Comparing to 1D viscoelastic Eqs. 1–2, the convolution
integral is eliminated in the system of Eqs. 24–25 by
introducing a sequence of variables ϑn. The internal
function ϑn satisfies a first-order differential Eq. 25 in
time. Equations 25 have to be solved for the unknown
functions ϑn in addition to the wave Eq. 24 of motion in
the time-domain numerical simulation of wave propa-
gations using FD methods. The accuracy of numerical
computation of wave propagation in an attenuating
medium depends on how well the poles ρn and residues
An of the function G(s) are determined when using
Eqs. 22–25. From a practical computation point of view,
it is important (crucial) to keep the number of internal
memory variable functions ζn in (23) or ϑn in (25) as
low as possible. This yields to construct a lower order
rational approximation of complex modulus M(ω) for
modeling of quality factor Q in the frequency domain.

Let us assume that the complex velocity V(ω) or
complex modulus M(ω) can be measured or computed
in a range of frequencies or can be modeled for a
specific viscoelastic material. We describe an inversion
method in Section 4 which allows us to identify the
real parameters An and ρn, and to construct a rational
([p, q]-Padé) approximation of M(ω) in (18), especially
for a lower order [p, q]-Padé approximation of M(ω)

from measured or computed complex velocity. There-
fore, the quality factor Q and phase velocity c(ω) can
be evaluated using formula (19) and (21), respectively.

Remark 1 For a homogeneous medium, the unrelaxed
modulus MU and the relaxed modulus MR in (8) are
constants. Equations 24–25 with appropriate initial and
boundary conditions can be solved numerically using
FD method. For more complex and heterogenous me-
dia, the relaxation function M(t) in (2), the complex
modulus M(ω) in (7), as well as the mass density
function � and the unrelaxed modulus MU in (24)
are spatially dependent. To extend our approach to a
heterogeneous medium, the real parameters δM, An,
and ρn in (25) should be placed an emphasis on spatial
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dependence. Generalization to the 2D FD simulation of
viscoelastic shear wave propagation was done in [16].

Remark 2 In Appendix, we present the detailed proofs
of an error estimate of the proposed approximation
method described in Eqs. 13–17.

4 Rational approximation for inversion

In this section, we present a new numerical inversion
method for approximation of the function dη as de-
scribed in Section 3 from known measured data. The
approach is based on the theory of inverse homogeniza-
tion [10] and the rational approximation of the spectral
measure introduced in [42, 43]. We solve the inverse
problem by constructing a constrained partial fraction
decomposition of rational (Padé) approximation to the
relaxation spectrum calculated using numerically simu-
lated values of measurements of complex velocity. The
constraints for the poles and residues of the partial
fractions are given in (17) for the function G(s). The
Padé approximation of the function G(s) is obtained by
solving for the coefficients in a least squared sense after
expressing the constraints as linear equations in these
coefficients.

4.1 Rational ([p, q]-Padé) approximation for G(s)

We note that the function G(s) has a discrete ap-
proximation Ĝ(s) of the partial fraction form (16) as
described in Section 3. Therefore, the right hand side
of (16) can be approximated by an appropriate rational
function

Ĝ(s) =
∑

n

An

s − ρn
� φ(s)

ψ(s)
(26)

where ρn is the n-th simple pole on the negative real
axis with positive real residue An, and the degree of the
polynomial φ(s) is lower than the degree of the poly-
nomial ψ(s). Let p and q be the orders of polynomials
φ(s) and ψ(s) with p < q, respectively. The rational
([p, q]-Padé) approximation of G(s) can be written as
(see [2, 6])

Ĝ(s) = φ(s)
ψ(s)

= a0 + a1s + a2s2 + · · · + apsp

b 0 + b 1s + b 2s2 + · · · + b qsq
(27)

where al (l = 0, 1, . . . , p) and b k (k = 0, 1, . . . q) are
the coefficients of the real polynomials φ(s) and ψ(s),
respectively.

Let us suppose that the function G(s) has at least
one pole, and all the poles of the denominator ψ(s) are

simple. This assumption can be viewed as an approxi-
mation of the function dη by a sum of the finite number
of Dirac measure in (13). Since the poles ρn of the
function G(s) lie in the interval (−∞, 0), we normalize
the polynomial coefficient b 0 = 1 in the denominator
ψ(s) which allows us to identify the non-zero poles of
G. To derive the linear system of equations for the
coefficients al’s and b k’s in (27), we further assume
that the measured data pairs (s j, g j) ( j = 1, 2, .., N) of
the function G are given by: g j = G(s j), s j = iω j, and
the imaginary unit i = √−1. Here ω j is the frequency
sample data point and N is the total number of the
complex measured values of G(s). We require that
the constructed approximation Ĝ(s) agrees with the
measured values of G(s) at the points s j. Then Eq. 27
can be written as

φ(s j)

ψ(s j)
= a0 + a1s j + a2s2

j + · · · + apsp
j

1 + b 1s j + b 2s2
j + · · · + b qsq

j

= g j (28)

where al (l = 0, . . . , p), b k (k = 1, . . . , q) are required
unknown coefficients. Equation 28 is equivalent to the
following system

a0 + a1s j + · · · + apsp
j − b 1g js j − b 2g js2

j − · · ·
− b qg js

q
j = g j (29)

for j = 1, 2, . . . , N. Therefore, the system (29) for
the unknown coefficients al’s and b k’s of the ratio
φ(s)/ψ(s) in (27) can be further expressed as the fol-
lowing system

Sc := g (30)

where

S =

⎛
⎜⎜⎝

1 s1 · · · sp
1 −g1s1 −g1s2

1 · · · −g1sq
1

1 s2 · · · sp
2 −g2s2 −g2s2

2 · · · −g2sq
2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 sN · · · sp

N −gNsN −gNs2
N · · · −gNsq

N

⎞
⎟⎟⎠

c = [
a0, a1, · · ·, ap, b 1, · · ·, b q

]�
, g = [

g1, g2, · · ·, gN
]�

,

(31)

the symbol [·]� indicates a transposed matrix. It is
clear that in order for the Padé coefficients al’s and
b k’s to be uniquely determined, the total number of
the measurements is required to be greater or equal
to the number of coefficients, i.e., N ≥ p + q + 1. The
reconstruction problem of determining the column real
coefficient vector c = [a0, a1, · · ·, ap, b 1, b 2, · · ·, b q]� in
(30) is an inverse problem. It is ill-posed and requires
regularization to develop a stable numerical algorithm.
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In the present work, we solve a constrained minimiza-
tion problem described below with constraints given
in (17).

4.2 Inversion method

Let define complex matrices S = SR + iSI and g = gR +
igI, where subindices R and I indicate the real and
imaginary parts of the matrices with entries in terms of
data, and the imaginary unit i = √−1. To construct a
real solution vector c of [p, q]-Padé coefficients for the
inverse problem (30), we formulate the least squares
problem as

min
c

{ || Sc − g ||2} ⇐⇒

min
c

{ || SRc − gR ||2 + || SIc − gI ||2} . (32)

Here || · || is the usual Euclidean norm. The solution of
the minimization problem (32) usually does not contin-
uously depend on the data, the problem requires a reg-
ularization technique. As a widely used approach for
solving ill-posed problems, the Tikhonov regularization
was applied to (32) with introducing a penalization term
in the Tikhonov regularization functional T λ(c, gR, gI),
so that the problem (32) can be reformulated as the
following unconstrained minimization problem [32]

min
c

T λ(c, gR, gI) =

min
c

{ || SRc − gR ||2 + || SIc − gI ||2 + λ2||c||2} (33)

Here λ > 0 is a regularization parameter to be chosen
properly. However, the problem (33) is still ill-posed
due to the noise present in the elements of the matrices
SR and SI as well as in the right-hand side vector g, so
that both the coefficient matrices and the right-hand
side vector are not precisely known. The total least
squares method could be used for solving this kind
of linear least squares problems [18, 20]. Application
of this method will not be considered in this paper.
In the present approach, inequalities in (17) for the
residues and poles of the function G(s) are used explic-
itly in the algorithm to impose constraints for the set of
minimizers of the problem. Therefore, the regularized
Tikhonov solution c for the problem (30) is obtained

as a solution of the following constrained least squares
minimization problem [42, 43]

min
c

T λ(c, gR, gI) =

min
c

{ || SRc − gR ||2 + || SIc − gI ||2 + λ2||c||2}

s.t. − ∞ < ρn < 0, 0 <
An

|ρn| < 1, n = 1, 2, . . . , q. (34)

Here parameters An and ρn in the constraints (34) are
residues and poles of the partial fractions decomposi-
tion of the reconstructed [p, q]-Padé approximation of
the function G(s). The corresponding Euler equation of
the problem (34) is given by

c = {
S�

RSR + S�
I SI + λIp+q+1

}−1 {
S�

RgR + S�
I gI

}
(35)

where Ip+q+1 denotes the (p + q + 1) × (p + q + 1)

identity matrix.
After reconstruction of the real coefficient vector c

of the rational function approximation Ĝ(s), its decom-
position into partial fractions (26) will give [p, q]-Padé
approximation of G(s). The reconstructed function
Ĝ(s) can be used to identify the relaxation spectrum
for a viscoelastic medium and to estimate the quality
Q factor for such a medium using formula (19).

5 Analytic representation for standard models

The aim of this section is to derive an analytic represen-
tation for standard viscoelastic models. We consider a
standard linear viscoelastic solid model with a discrete
spectrum as well as a nearly constant-Q model with a
continuous spectrum. These analytic models are used
in numerical simulations to examine the effectiveness
of the inversion method developed in Section 4.

5.1 Standard linear viscoelastic solid model

We consider the time-dependent relaxation function of
stress-strain relation in a standard linear solid (Gener-
alized Zener) model [7, 8]

M(t) = MR

[
1 −

L∑
n=1

(
1 − τεn

τσn

)
e−t/τσn

]
H(t) (36)

where τεn ≥ τσn , τεn , τσn denote material strain relax-
ation time and stress relaxation time for the n-th mech-
anism, respectively. This model was also introduced
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Table 1 True values of relaxation times for five mechanisms to yield a constant Q = 100 (ω = 2 ∼ 50 Hz) for the synthetic viscoelastic
modulus given in [31]

n 1 2 3 4 5

τεn (s) 0.3196389 0.0850242 0.0226019 0.0060121 0.0016009
τσn (s) 0.3169863 0.0842641 0.0224143 0.0059584 0.0015823

in [5, 26, 31, 39] in order to obtain a nearly constant
quality Q factor over the seismic frequency range of
interest. Here the relaxed modulus MR = MU − δM, L
is the number of relaxation mechanisms, and H(t) is the
heaviside step function. The unrelaxed modulus

MU = MR

[
1 −

L∑
n=1

(
1 − τεn

τσn

)]
(37)

is obtained for t = 0 in (36). Applying the Laplace
transform in s-multiplied form (see (7) in [12]), i.e.,

F(s) = s
∫ ∞

0
F(t)e−stdt (38)

to the stress-strain relation (36), and setting s = iω, the
complex modulus can be derived as

M(ω) = MR

[
1 −

L∑
n=1

(
1 − τεn

τσn

)
iω

iω + τ−1
σn

]
. (39)

Noticing (37) and the definition of function G(s) in (10),
corresponding to the complex modulus M(ω) (39), G(s)
is found in the following L-term partial fractions form

G(s) =
(

MU

MR
− 1

)−1 L∑
n=1

(τεn/τσn − 1)τ−1
σn

s + τ−1
σn

. (40)

In the complex s-plane, Eq. 40 implies a representation
for the poles and residues of the function G(s):

ρn = −τ−1
σn

, (41)

An = (MU/MR − 1)−1 [(
τεn/τσn − 1

)
τ−1
σn

]
(42)

where 1 ≤ n ≤ L. The location of poles and residues of
the function G depends on the strain-stress relaxation

parameters τεn and τσn . From Eq. 37, one can check that
the residues An and poles ρn in (41–42) satisfy the sum
rule property as in the last equation of (17).

Let us assume that the complex velocity V(ω) or the
complex modulus M(ω) can be simulated in a range
of frequencies for the SLS model (39) and the real
parameters An and ρn can be recovered using the re-
construction algorithm of a [p, q]-Padé approximation
of the function G(s) as described in the previous sec-
tions. From Eqs. 41–42, we can calculate the strain-
stress relaxation parameters τεn and τσn in terms of the
recovered poles ρn and residues An of G(s) explicitly as
follows:

τ c
εn

= (MU/MR − 1)Anρ
−2
n − ρ−1

n , (43)

τ c
σn

= −ρ−1
n (44)

where 1 ≤ n ≤ q, the superscript c indicates the com-
puted value of τεn and τσn . From formulas (41–42) and
(43–44), we can see that the parameters τεn and τσn can
be simply calculated once the poles ρn and residues An

of the approximation dη̂(x) of the function dη(x) are
determined. For the SLS model (39), by the definition
(6) and Eq. 39, the quality Q factor as a function of
frequency ω can be estimated for different lower orders
q ≤ L using the derived formula

Qc(ω) =
1 +

q∑
n=1

(τ c
εn

− τ c
σn

)ω2τ c
σn

1 + ω2(τ c
σn

)2

q∑
n=1

(τ c
εn

− τ c
σn

)ω

1 + ω2(τ c
σn

)2

(45)

Table 2 Reconstruction of poles and normalized resides of the function G(s) corresponding to the synthetic modulus M(s)

n 1 2 3 4 5
∑

An/|ρn| q

An/|ρn| 0.252656 0.193709 0.179893 0.193881 0.179861 1.0000000 7
ρn −631.99141 −167.83029 −44.61438 −11.86745 −3.1547105
An/|ρn| 0.253182 0.196344 0.206661 0.317445 0.9736328 4
ρn −631.21638 −166.26238 −40.83089 −6.72937
An/|ρn| 0.271451 0.231768 0.382293 0.8855121 3
ρn −600.65191 −133.44157 −17.04249
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Fig. 1 Reconstruction of the normalized residues and poles of
the function G(s) (top) and the function ξ(x) (bottom) (SLS
model)

or equivalently, it can be evaluated using

Qc(ω) =
MR − δM

q∑
n=1

Anρ
−1
n ω2

ω2 + ρ2
n

δM
q∑

n=1

Anω

ω2 + ρ2
n

(46)

where Qc(ω) represents the calculated quality factor Q.
The complex velocity can be calculated as

V(ω) � Vc(ω) =
√

Mc(ω)

�
(47)

where

Mc(ω) = MR

[
1 −

q∑
n=1

(
1 − τ c

εn

τ c
σn

)
iω

iω + (τ c
σn

)−1

]
(48)

is the computed complex modulus. Therefore, the
phase velocity can be calculated using (21). Further-
more, in terms of the recovered strain-stress relaxation
parameters τ c

εn
and τ c

σn
, the approximation of the time-

dependent relaxation function of stress-strain relation
for the SLS model (36) can be represented as

Mc(t) = MR

[
1 −

q∑
n=1

(
1 − τ c

εn

τ c
σn

)
e−t/τ c

σn

]
H(t) (49)

where Mc(t) is the calculated relaxation function.

5.2 A nearly constant-Q model

We consider a nearly constant-Q model with a continu-
ous relaxation spectrum. The synthetic function dη/dx
for this model has a constant relaxation spectrum in the
finite interval [x0, x1] ⊂ (0, ∞) (x0 �= x1) given by

dη(x)

dx
=

⎧⎨
⎩

[
ln

(
x1

x0

)]−1

, if x0 ≤ x ≤ x1

0, if x < x0 or x > x1.

(50)

The representation of the normalized relaxation spec-
trum function in (56) is derived such that

ξ(x) =
∫ x+

0

dη(t)
t

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ x < x0

[
ln

(
x1

x0

)]−1

ln
(

x
x0

)
, if x0 ≤ x ≤ x1

1, if x > x1.

(51)

Table 3 Recovery of relaxation times for three and four mechanisms to yield a constant Q = 100 (ω = 2 ∼ 50 Hz) using the constrained
Padé approximant method (τ c

εn
, τ c

σn
stand for the predicted values of relaxation times)

n 1 2 3 4 q

τ c
εn

(s) 0.1508046 0.0247268 0.0060695 0.0016029 4
τ c
σn

(s) 0.1486096 0.0244912 0.0060145 0.0015842
τ c
εn

(s) 0.0597205 0.0075747 0.0016859 3
τ c
σn

(s) 0.0586769 0.0074939 0.0016649
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Fig. 2 True and computed quality Q factor (top) and phase
velocity c(ω) (bottom) for the SLS model

It is easy to check the function dξ(x) = dη(x)/x in
(51) satisfies the sum rule property of Proposition 1.
The corresponding function G defined in (10) can be
derived analytically as

G(s) =
∫ ∞

0

dη(x)

s + x
=

[
ln

(
x1

x0

)]−1

ln
(

s + x1

s + x0

)
(52)

where s = iω. The corresponding complex modulus and
complex velocity are obtained as

M(ω) = MU − δM
[

ln
(

x1

x0

)]−1

ln
(

iω + x1

iω + x0

)
, (53)

and

V(ω) =
[

1
�

(
MU − δM

[
ln

(
x1

x0

)]−1

ln
(

iω + x1

iω + x0

))] 1
2

(54)

respectively, where � is the density. The unrelaxed
modulus is MU = �c2

U , cU is the unrelaxed velocity,
δM = MU − MR is the relaxation modulus, MR = �c2

R,
cR is the relaxed velocity.

6 Numerical examples

In this section we present numerical experiments for
reconstruction of the function G(s) from frequency-
dependent measurements of the complex velocity or
the viscoelastic modulus using constrained rational
([p, q]-Padé) approximation technique as described in
Section 4 to illustrate the effectiveness of the developed
inversion method. The recovered poles and residues
of the function G(s) are used to calculate relaxation
parameters and to estimate the frequency-dependent
quality Q factor and frequency-dependent phase
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Fig. 3 Reconstruction of poles and the normalized residues of
the function G(s) (top) and the function ξ(x) (bottom) for the
continuous relaxation spectrum model
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Table 4 Reconstruction of poles and normalized resides of the synthetic function G(s) for the continuous spectrum model

n 1 2 3 4 5
∑

An/|ρn| q

An/|ρn| 0.2208295 0.1469902 0.1883802 0.3851157 0.9413156 4
ρn −2,978.2463 −480.96323 −94.802749 −5.7450234 4
An/|ρn| 0.1882749 0.1256995 0.1223043 0.1793468 0.3413333 0.9569588 5
ρn −3,704.1072 −735.70125 −217.64319 −49.240967 −3.6973038 5

velocity for a viscoelastic model with a continuous re-
laxation spectrum as well as for the SLS viscoelastic
model (36).

6.1 Results for the SLS model

In the following numerical simulations we employ the
values of material strain relaxation time τεn and stress
relaxation time τσn shown in Table 1. The unit of the
time parameters τεn and τσn in first column of Table 1 is
in second(s). The values of these parameters τεn and τσn

were used in Ref. [31] for numerically solving the 1-D
viscoelastic equation of motion with L = 5 relaxation
mechanisms to yield a constant quality factor Q = 100.
Here we used these values of τεn and τσn to calculate the
synthetic complex viscoelastic modulus M(ω) at 50 data
points in the seismic exploration band of frequencies
from 2 to 50 Hz.

Table 2 shows results of reconstruction of poles
ρn and normalized residues An/|ρn| of the function
G(s) for different orders of q = p + 1 chosen in the
inversion algorithm when there is no noise in the
data. The first row in Table 2 shows the recovered
five poles and residues of the function dη corre-
sponding to the synthetic modulus M(ω) when q = 7,
they are reconstructed very accurately with the com-
puted sum

∑
An/|ρn| ≈ 1.0000000. The second and

third rows present the poles and residues reconstructed
with the calculated sum

∑
An/|ρn| ≈ 0.9736328 for

q = 4 and
∑

An/|ρn| ≈ 0.8855121 for q = 3, respec-
tively. The analytically and numerically calculated func-
tions dξ(x)/dx, dξ̂ (x)/dx, ξ(x), and ξ̂ (x) are shown in
Fig. 1. The top part of Fig. 1 illustrates the reconstruc-
tion of poles ρn and normalized residues An/|ρn| for
the functions dξ(x)/dx and dξ̂ (x)/dx using [p, q]-Padé
approximation with orders (1) q = p + 1 = 3, (2) q =
p + 1 = 4, and (2) q = p + 1 = 7. The location of the
recovered poles of the function G is on the negative real
semiaxis. The bottom part of Fig. 1 represents the true
and computed functions ξ(x) and ξ̂ (x) using formulas
(56) and (57).

The recovered poles and residues of G are further
used to convert the values of material strain relaxation
time τεn and stress relaxation time τσn using formulas
(43–44) with the number of relaxation mechanisms be-

ing less than 5. These reconstructed values of τεn and τσn

are shown in Table 3 when there is no noise in the data
using the lower order q < 5 in [p, q]-Padé approximant
method. In Table 3, τ c

εn
and τ c

σn
stand for the predicted

relaxation times for L = q = 3 and L = q = 4 mecha-
nisms to yield a constant Q = 100 (ω ∈ 2π [2, 50] Hz)
using the constrained Padé approximant method.

To estimate the frequency-dependent quality Q fac-
tor and the frequency-dependent phase velocity for
the SLS model, we chose the density � = 2000kg/m3

and the relaxed modulus MR = 8Gpa in the numerical
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Fig. 4 Calculation of quality Q factors (top) and phase velocities
c(ω) (bottom) for the continuous relaxation spectrum model
using different orders of Padé approximation
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Table 5 Calculated relative errors of true and computed physical parameters using formula (55)

Relative error Phase velocity Quality factor Complex velocity Complex modulus q

E0 1.2344214e-02 4.7875054e-01 1.2348505e-02 2.4544535e-02 4
E0 9.1698749e-03 2.3327527e-02 9.1676003e-03 1.8251178e-02 5

simulations. Figure 2 shows the results of the recov-
ered quality Q factors (top) and phase velocity c(ω)

(bottom). It is seen from the top part of Fig. 2 that
the estimated values of the quality Q factors are nearly
constant Q = 100 over the frequency band between 12
and 37 Hz for the lower order [p, q]-Padé approximant
method. However, the calculated Q factors were not
very good approximation to the constant Q = 100 in
both low frequency range about 2 ∼ 12 Hz and high
frequency range between 37 and 50 Hz for this particu-
lar used analytic SLS model. The estimated Q factors
shown in the top Fig. 2 are calculated using equiva-
lent formulas (45) and (46). The true and computed
phase velocity versus frequency shown in the bottom
Fig. 2 were calculated using formula (21). The results
of computations for Q factors and phase velocity agree
with the true values in published simulations of [31],
especially for values at high frequencies. The calculated
values of relaxation mechanisms can be used for seismic
wavefield simulation in viscoelastic media.

6.2 Results for the nearly constant-Q model

In the numerical experiments for the nearly constant-
Q model with a continuous relaxation spectrum (50) or
(51), we chose � = 2,400kg/m3, cU = 3,500m/s, cR =
3,000m/s, leading to δM = 7.8Gpa. The complex ve-
locity measurements were simulated at 50 data points
in a range of frequency as ω ∈ 2π [10−2, 102]s−1, and
the interval [x0, x1] = [0.35, 104] was chosen for the
support of the function dξ(x). The recovered normal-
ized residues and poles of the function G(s) for the
continuous relaxation spectrum model are shown in
the top part of Fig. 3 using the Padé approximants of
different orders (1) p + 1 = q = 4 and (2) p + 1 = q =
5 when there is no noise in the data. The recovered

poles are located in the negative real semiaxis. We com-
pared analytically and numerically calculated normal-
ized relaxation spectrum functions. The bottom part of
Fig. 3 shows the true synthetic function ξ(x) and the
approximation ξ̂ (x) of the function ξ(x) using formulas
(56) and (57). The computed normalized residues and
poles of the function G(s) as well as the computed sum∑

An/|ρn| are summarized in Table 4. It is seen from
Table 4 that the values of the computed normalized
residues are between zero and one, and the calculated
sum of the normalized residues is 0.9413156 for q = 4
and 0.9569588 for q = 5, respectively. The location of
the recovered four poles for q = 4 and five poles for q =
5 lays in between −10,000 and −0.35 on the negative
real semiaxis.

The recovered complex modulus and complex veloc-
ity of the continuous spectrum model were further used
to estimate the quality factor Q and the phase velocity
c(ω) over the frequency band between 10−2 and 102 Hz
using formulas (19) and (21). Figure 4 represents the
reconstruction of the quality factor Q (top) and the
phase velocity (bottom) of the model versus frequency
using the Padé approximants of two different orders. It
is seen from the top part of Fig. 4 that the quality factor
of the continuous spectrum model is almost nearly
constant Q � 21 and the recovered quality factors for
q = 4 and q = 5 fit the frequency dependent Q values
of the model very well in a range of frequency about
0.2 ∼ 100 Hz. The phase velocity increases with the
frequency illustrated in the bottom part of Fig. 4. The
true and reconstructed phase velocities also fit fairly
well in the frequency band from 10−2 to 102 Hz.

We also calculated values of relative errors for the
estimation of phase velocity, quality Q factor, complex
velocity, and complex modulus at sample data points
over the given frequency band demonstrated in Table 5.

Table 6 Reconstruction of relaxation times to yield a constant Q = 100 (ω = 2 ∼ 50 Hz) for data with noise 1.0%, 1.5% and 2.5% (τ c
εn

,
τ c
σn

stand for the predicted values of relaxation times)

n 1 2 3
∑

An/|ρn| Noise

τ c
εn

(s) 0.05282943 0.00750373 0.00169959 0.86628592 1.0%
τ c
σn

(s) 0.05278142 0.00750316 0.00169956
τ c
εn

(s) 0.04335840 0.00608435 0.00155169 0.84236140 1.5%
τ c
σn

(s) 0.04332566 0.00608397 0.00155166
τ c
εn

(s) 0.03318668 0.00380367 0.00093020 0.80980242 2.5%
τ c
σn

(s) 0.03316694 0.00380347 0.00093019
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Fig. 5 True and computed quality factor Q (top) and phase
velocity c(ω) (bottom) for data with 1.0%, 1.5% and 2.5% noise
(SLS model)

In Table 5, the frequency band for calculation of rel-
ative errors of phase velocity, complex velocity, and
complex modulus is from 0.01 to 100 Hz, and 0.2 ∼
100 Hz for the quality Q factors. The relative error
formula follows

E0 = max
1≤ j≤N

[∣∣g(ω j) − ĝ(ω j)
∣∣∣∣g(ω j)

∣∣
]

(55)

where ω j ( j = 1, 2, ..., N) are the frequency sample
data points and N is the total number of sample data.
Here g(ω) represents the given frequency dependent
function and ĝ(ω) the approximate function of g(ω),
respectively.

6.3 Sensitivity analysis of the method

To numerically illustrate the sensitivity analysis of the
estimated quality Q factors and phase velocities, a

uniformly distributed random noise was calculated as
percentage of exact value at each measured data point
for the SLS model as described in Section 6.1. We
have performed numerical experiments to examine the
sensitivity of the algorithm for different noise levels
added to the input data. The same synthetic complex
viscoelastic modulus is used as in Section 6.1. The
order q = p + 1 = 5 in the inversion algorithm was
chosen to reconstruct the strain-stress relaxation time
parameters τεn and τσn using data with added noise.
Table 6 shows the summary of the recovered values
of τεn and τσn to yield a constant Q = 100 on the fre-
quency band of 2 ∼ 50 Hz together with the calculated
values of

∑
An/|ρn| where

∑
An/|ρn| ≈ 0.86628592,∑

An/|ρn| ≈ 0.84236140, and
∑

An/|ρn| ≈ 0.80980242
(1 ≤ n ≤ 3), corresponding to data with different noise
levels 1.0%, 1.5%, and 2.5%, respectively.

In the numerical experiments any recovered pole ρn

that is off the negative real semiaxis is discarded based
on the inversion algorithm so that the total number
of reconstructed relaxation mechanisms is less than
q = 5 in each case of data with added noise. The re-
constructed values of relaxation parameters τεn and τσn

presented in Table 6 were used to evaluate the quality
Q factors and phase velocities. Figure 5 illustrates the
estimation of the quality Q factors (top) and phase
velocities (bottom) for data with 1.0%, 1.5% and 2.5%
noise corresponding to Table 6. The results of numer-
ical computations show that even with added noise,
the computed quality Q factors are nearly constant
Q = 100 in the frequency band about ω = 10 ∼ 40 Hz,
and the recovered phase velocities agree with the true
values in the frequency range about ω = 2 ∼ 50 Hz.
This demonstrates the stability of the reconstruction.

7 Conclusions

We developed a new numerical inversion method
for estimation of quality Q factor and phase
velocity in homogeneous dissipating media using
Padé approximation. The approach is based on a
rational ([p, q]-Padé) approximation of the relaxation
spectrum in the Stieltjes representation of the complex
viscoelastic modulus. The problem is formulated as
a constrained least squares minimization problem
with regularization constraints provided by the
Stieltjes representation of the complex modulus.
Calculation of coefficients of Padé approximation is
an ill-posed problem, and regularization is necessary
to obtain an accurate solution. The method was tested
using analytical models of viscoelastic media with a
continuous spectrum as well as a standard linear solid
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(Zener) model. The numerical results demonstrate the
effectiveness of the developed approach. The method
can be used for identification of relaxation parameters
of viscoelastic materials from measurements of
complex velocity or complex modulus. The recovered
relaxation mechanisms can be used for simulation of
seismic wavefields in viscoelastic media. Coefficients
of low order Padé approximation provide coefficients
of the differential equations for internal variables that
allow efficiently reduce computation of viscoelastic
problem to simulation of elastic wave equation.
Our approach may provide significant savings in the
computer memory and computation time needed for
numerical simulation of seismic wave propagations in
viscoelastic media.
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Appendix: Error estimate

Let function η(x) satisfy the sum rule as in Propo-
sition 1. In particular, η(0) = η(0+), our approxima-
tion method for the function dη(x) implies that η̂(0) =
η̂(0+). Let dξ(x)/dx and dξ̂ (x)/dx denote the normal-
ized relaxation spectrum function and the approximate
normalized relaxation spectrum function, respectively,
such that for x ∈ (0, ∞):

ξ(x) =
∫ x+

0

dη(t)
t

, (56)

ξ̂ (x) =
∫ x+

0

dη̂(t)
t

=
∫ x+

0

q∑
n=1

An

|ρn|δ(t + ρn)dt (57)

where An and ρn (n = 1, 2, ..., q) are the poles and
residues of the function Ĝ(s).

Proposition 2 Function ξ is a non-decreasing function
such that

lim
x→∞ ξ(x) = 1. (58)

Proof Noticing that ξ is the integral of a non-negative
measure in (56), the verification of a non-decreasing

function ξ is given by the fact that ξ(0) = 0 and for
∀x1, x2 ∈ [0, ∞), x1 < x2,

ξ(x2) − ξ(x1) =
∫ x+

2

x+
1

dη(t)
t

=
∫ x+

2

x+
1

�(−lnt)dt
t

≥ 0. (59)

The limit (58) is established by the sum rule property
of the function η in Proposition 1. This completes the
proof. ��

Theorem 1 Assume that for given suf f iciently small
numbers ε1 > 0, ε2 > 0 and ε3 > 0 there exists a large
enough number T > |ρq| > 0 such that

‖ ξ(x) − ξ̂ (x) ‖L2
[0,T]< ε1, (60)

1 − ε2 < ξ(T), (61)

|1 − ξ̂ (x)| ≤ ε3, x ∈ [T, ∞). (62)

The following error estimate of the q-th order rational
approximation Ĝ(s) to the Stieltjes integral G(s)

|G(s) − Ĝ(s)| ≤ c1ε1 + c2ε2 + c3ε3 (63)

holds for any s = iω, ∀ω ∈ [ω0, ∞), where

c1 =
[

1
2

(
1

T + ω2
0/T

)
+ π

4ω0

] 1
2

, (64)

c2 = π

2
+ 2√

1 + ω2
0/T2

, (65)

c3 = 1√
1 + ω2

0/T2
. (66)

Proof By Proposition 2 and inequality (61), for the
given sufficiently small number ε2 > 0, there exists a
large enough number T > |ρq| > 0 such that

1 − ε2 < ξ(T) ≤ ξ(x) < 1, x ∈ [T, ∞). (67)

For any s = iω, ω ∈ [ω0, ∞), we write

G(s) − Ĝ(s) =
∫ ∞

0

d[η(x) − η̂(x)]
s + x

= I1 + I2 (68)
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where

I1 =
∫ T+

0

d[η(x) − η̂(x)]
s + x

=
∫ T+

0

x
s + x

d[ξ(x) − ξ̂ (x)],

(69)

I2 =
∫ ∞

T+

d[η(x) − η̂(x)]
s + x

=
∫ ∞

T+

x
s + x

d[ξ(x) − ξ̂ (x)].

(70)

Next, we will estimate the above two integrals I1 and I2.
To estimate the integral I1, by the definition of ξ and ξ̂

in (56–57), ξ(0+) = ξ̂ (0+) = 0, and using integration by
parts on the right hand side of (69), we have

I1 = [ξ(x) − ξ̂ (x)]x
s + x

|T
0 −

∫ T+

0
[ξ(x) − ξ̂ (x)]d

(
x

s + x

)

= [ξ(T) − ξ̂ (T)]T
s + T

−
∫ T+

0
[ξ(x) − ξ̂ (x)] s

(s + x)2 dx.

We note that the second term on right hand side of
the above equation can be estimated by the Cauchy–
Schwarz inequality. Then, I1 is estimated as

|I1| ≤ |ξ(T) − ξ̂ (T)|T
|s + T| +

[∫ T+

0
|ξ(x) − ξ̂ (x)|2dx

] 1
2

·
[∫ T+

0

∣∣∣∣ s
(s + x)2

∣∣∣∣
2

dx

] 1
2

. (71)

Since ξ̂ (T) =
q∑

n=1

An

|ρn| and the inequalities (62) and (67)

hold, we have∣∣∣∣∣1 −
q∑

n=1

An

|ρn|

∣∣∣∣∣ ≤ ε3 (72)

and

|ξ(T) − ξ̂ (T)| ≤ |ξ(T) − 1| +
∣∣∣∣∣1 −

q∑
n=1

An

|ρn|

∣∣∣∣∣ ≤ ε2 + ε3

(73)

so that from (60) and (73), the estimate (71) becomes

|I1| ≤ (ε2 + ε3)T
|iω + T| + ε1

[∫ T+

0

|iω|2
|iω + x|4 dx

] 1
2

≤ (ε2 + ε3)T√
ω2 + T2

+ ε1

[∫ T+

0

ω2

(ω2 + x2)2 dx

] 1
2

. (74)

It should be noted that the definite integral under the
square root term on the right hand side of (74) can be
calculated as

∫ T+

0

ω2

(ω2 + x2)2 dx = 1
2

(
T

T2 + ω2

)
+ 1

2ω
arctan

(
T
ω

)

(75)

so that for ω ∈ [ω0, ∞),
∣∣∣∣∣
∫ T+

0

ω2

(ω2 + x2)2 dx

∣∣∣∣∣ ≤ 1
2

(
1

T + ω2
0/T

)
+ π

4ω0
. (76)

Therefore, from (75) and 76), we obtain

|I1| ≤ c1ε1 + c3(ε2 + ε3) (77)

where

c1 =
[

1
2

(
1

T + ω2
0/T

)
+ π

4ω0

] 1
2

, c3 =
[

1 + ω2
0

T2

]− 1
2

.

(78)

To estimate I2, noticing (57), for x > |ρq|, we have

dξ̂ (x) =
q∑

n=1

An

|ρn|δ(x + ρn) = 0 (79)

since |ρq| = max
1≤n≤q

|ρn|. So the integral (70) can be

rewritten as

I2 =
∫ ∞

T+

x
s + x

dξ(x) =
∫ ∞

T+

x
s + x

d[ξ(x) − 1]. (80)

Then integration by parts gives

I2 = x
s + x

[ξ(x) − 1] |∞T −
∫ ∞

T+
[ξ(x) − 1] s

(s + x)2 dx

= −[ξ(T) − 1]T
s + T

−
∫ ∞

T+
[ξ(x) − 1] s

(s + x)2 dx (81)

since lim
x→∞ ξ(x) = 1. Then, using (67), for ω ∈ [ω0, ∞), it

follows from (81) that I2 is estimated as

|I2| ≤ |ξ(T) − 1|T
|iω + T| +

∫ ∞

T+
|ξ(x) − 1| |iω|

|iω + x|2 dx

≤ ε2T√
ω2 + T2

+ ε2

∫ ∞

T+

ω

ω2 + x2 dx

≤ ε2√
1 + ω2

0/T2
+ ε2

[
π

2
− arctan

(
T
ω

)]
. (82)
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Thus we get

|I2| ≤
⎛
⎝ 1√

1 + ω2
0/T2

+ π

2

⎞
⎠ ε2. (83)

For ε1 > 0, ε2 > 0, ε3 > 0 and ω ∈ [ω0, ∞), from (77)
and (83), we obtain the following error estimate

|G(iω) − Ĝ(iω)| ≤ |I1| + |I2| ≤ c1ε1 + c2ε2 + c3ε3 (84)

where c1, c3 are given in (78), and

c2 = π

2
+ 2√

1 + ω2
0/T2

. (85)

This completes the proof. ��
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