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a b s t r a c t

The paper deals with Bruggeman effective medium approximation (EMA) which is often
used to model effective complex permittivity of a two-phase composite. We derive the
Stieltjes integral representation of the 3D Bruggeman effective medium and use con-
strained Padé approximation method introduced in [39] to numerically reconstruct the
spectral density function in this representation from the effective complex permittivity
known in a range of frequencies. The problem of reconstruction of the Stieltjes integral rep-
resentation arises in inverse homogenization problem where information about the spec-
tral function recovered from the effective properties of the composite, is used to
characterize its geometric structure. We present two different proofs of the Stieltjes analyt-
ical representation for the effective complex permittivity in the 3D Bruggeman effective
medium model: one proof is based on direct calculation, the other one is the derivation
of the representation using Stieltjes inversion formula. We show that the continuous spec-
tral density in the integral representation for the Bruggeman EMA model can be efficiently
approximated by a rational function. A rational approximation of the spectral density is
obtained from the solution of a constrained minimization problem followed by the partial
fractions decomposition. We show results of numerical rational approximation of
Bruggeman continuous spectral density and use these results for estimation of fractions
of components in a composite from simulated effective permittivity of the medium. The
volume fractions of the constituents in the composite calculated from the recovered
spectral function show good agreement between theoretical and predicted values.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Bruggeman effective-medium approximation (EMA) [6,22] is one of the mixing rules that is widely used in electro-
magnetics for modeling the effective response of heterogeneous composite materials. Indeed, many physical phenomena in
heterogeneous media can be described by the effective medium theory which gives the effective complex permittivity �⁄ of a
mixture of two materials with complex permittivity �1 and �2. The EMA model is based on an assumption that the inhomo-
geneous material is composed of two types of approximately spherical grains with complex-valued permittivity �1 and �2

mixed in the volume fractions f and 1 � f. It was shown that the Bruggeman model of the effective permittivity corresponds
to a hierarchical medium with inclusions of very different sizes, so that any two spherical inclusions of similar size are so
well separated that the whole assemblage can be viewed as a dilute composite [27,34]. The derivation of the effective per-
mittivity �⁄ is based on the assumption of self-consistency which allows to replace the material surrounding the inclusions
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by a homogeneous matrix material with the same effective permittivity �⁄(f,�1,�2), and use first order approximation for di-
lute composite to calculate the resulting effective property. This model is also called self-consistent effective medium
approximation [23,28,31]. Though the model behind the Bruggeman effective medium formula is relatively simple, this
approximation gives a description of percolation phenomenon [18], and this is one of the reasons for its wide use in physics.
Indeed, the applications exploiting Bruggeman effective medium formula and spectral representation range from character-
ization of optical and electrical properties of cermets [21] and modeling linear and nonlinear composites [30,36] to calcula-
tion of the effective response of composite polycrystalline and metamaterials [2,35], dielectric properties of biological cells
[19], and critical behavior of self-similar brine-filled porous rocks [16].

Spectral representation of the effective complex permittivity of a two-phase composite was introduced in [3] and used to
bound the effective permittivity of composites formed from two materials with permittivity �1 and �2 [4,17,26]. It presents
the effective permittivity �⁄ as a Stieltjes function with special analytical properties:

FðsÞ ¼ 1� �
�

�2
¼
Z 1

0

dlðxÞ
s� x

; s ¼ 1
1� �1=�2

: ð1Þ

Here the positive measure l is the spectral measure of a self-adjoint operator Cv, with v being the characteristic function of
the domain occupied by the first material in the composite, and C =r(�D)�1(r�), where (�D) is the Laplacian operator. The
function F(s) is analytic outside the [0,1]-interval in the complex s-plane. The representation is valid for other physical prop-
erties such as electrical conductivity, thermal conductivity, diffusivity and elastic properties.

The specific feature of the spectral representation (1) is that it separates the dependence of the effective permittivity �⁄ on
the properties of the components from the dependence on the micro-geometry through the complex variable s. This feature
of the analytic representation was used to infer information about the microgeometry of the composite [10,12,24,25]. The
inverse homogenization method [10] allows to estimate the parameters of the microstructure of a composite using mea-
sured effective properties of the medium. The method is based on the reconstruction of the spectral measure in the analytic
Stieltjes integral representation (1), the spectral measure contains all information about the microgeometry. It was shown
that the spectral measure can be uniquely recovered from the measurements of the effective property over a range of fre-
quencies [10], but the problem of reconstruction is ill-posed and requires regularization. The inverse homogenization was
extended to viscoelastic composite media in [7]. Regularized method of constrained rational approximation of the spectral
function was developed in [39] and used in [38] for evaluation of microstructural parameters of the composite and in [40] for
modeling of wave propagation in viscoelastic medium.

The aim of this paper is to present a derivation of the analytic Stieltjes integral representation for the 3D Bruggeman EMA
model which has a continuous spectral density function. Particular cases of the spectral representation for Bruggeman med-
ium or the whole formula have appeared already in several publications [15,21,23,29,32,36]. For instance, Stieltjes represen-
tation formula for the case of low volume fraction of the first material (less than threshold value equal 1/3), was used in
[15,21,29] to describe results of experiments. The whole formula has appeared in (49–52) of Ref. [23], in (12) and (13) of
Ref. [36], and in Table 1 of [32]. However these references did not provide the detailed proof of the spectral representation
formula. Here we present two detailed derivations of the Stieltjes integral representation, one proof is based on direct cal-
culation and the second one (in Appendix) is based on application of the Stieltjes inversion formula [37].

In the second part of the paper, we use the derived Stieltjes integral representation to investigate the inverse homogeni-
zation problem for Bruggeman composite and to numerically study the efficiency of the constrained Padé approximation
method for the case of continuous spectral density in the Bruggeman model. Assuming that the values of the effective com-
plex permittivity are available in an interval of frequencies (which provides necessary and sufficient data to uniquely recover
the spectral density function [10]), we use a recently developed constrained Padé approximation method [39] to construct a
low order Padé approximation to the continuous spectral function. Padé approximation is constructed solving constrained
minimization problem followed by partial fraction decomposition. Constrained minimization algorithm provides regulariza-
tion of the problem. The resulting approximation consists of small number of poles accurately approximating continuous
spectral density. The developed algorithm is applied to the problem of estimation of volume fractions of the constituents
in a metal–insulator composite material. The problem of estimation of concentrations or fractions of constituents in the mix-
ture is of significant interest in nondestructive testing of composite materials, it has various biomedical, geophysical, engi-
neering, and material science applications [8,9,12–14,24,25,38,39]. We assume that the effective complex permittivity is
given by the 3D Bruggeman EMA analytical model, construct Padé approximation of the spectral function, and calculate
the volume fraction of one of the constituents as zero moment of the spectral function. The results show good agreement
between theoretical and predicted values and demonstrate the efficiency of the presented method.

The method can be used for constructing an accurate approximation to the 3D Bruggeman effective medium in numerical
applications dealing with spectral representation. In particular, it can be used for extraction of the spectral function from
effective measurements to use it in prediction of other effective properties of the same composite [10,11] or in prediction
of effective properties of a different composite with similar topology [23].

2. Spectral representation of 3D Bruggeman EMA model

This section presents the derivation of an analytic Stieltjes integral representation for the effective permittivity �⁄ of the
three-dimensional (3D) Bruggeman self-consistent effective medium analytic model which has a continuous spectral density

D. Zhang et al. / Applied Mathematics and Computation 217 (2011) 7092–7107 7093



Author's personal copy

function. In 3D Bruggeman’s symmetric EMA model, the self-consistency condition results in the equation relating the effec-
tive permittivity �⁄ of a two-phase mixture with permittivity and fractions of the components:

f
�� � �1

2�� þ �1
þ ð1� f Þ �

� � �2

2�� þ �2
¼ 0: ð2Þ

Here f is the volume fraction of the first phase with permittivity �1, and 1 � f is the volume fraction of the second phase with
permittivity �2.

Solving Eq. (2) for �⁄ in terms of complex permittivities �1, �2 and the volume fraction f of the first phase gives

�� ¼ 1
4

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 8�1�2

q� �
; where c ¼ ð3f � 1Þ�1 þ ð2� 3f Þ�2: ð3Þ

Here, c can be expressed as a convex combination of permittivities �1 and �2 as: c = f(2�1 � �2) + (1 � f)(2�2 � �1). The param-
eter c in (3) can also be represented in a symmetric form as c = (3f1 � 1)�1 + (3f2 � 1)�2, where f1 and f2 are fractions of the
components in the composite, which shows that the Bruggeman mixing formula is symmetric with respect to the inter-
changing the inclusion and matrix materials. We choose the positive sign of the square root in (3) because for real positive
�1 and �2, the effective permittivity �⁄ should lie between the values of �1 and �2.

When �2 goes to zero, the solution �⁄ of Eq. (2) can have different behavior depending on the value of the volume fraction f
of the phase 1. In this case the representation �⁄ in (3) becomes �⁄ = (c + jcj)/4 where c = (3f � 1)�1. The effective permittivity
�⁄ is zero if the volume fraction f is less than some threshold volume fraction fc, and �⁄ is strictly positive if the volume frac-
tion f is bigger than the threshold value fc:

�� ¼
3�1ðf � fcÞ=2 if f c < f < 1;
0 if 0 < f 6 fc:

�
ð4Þ

This critical volume fraction value fc, fc = 1/3, is the critical filling factor or the percolation threshold for the phase 1.
The function F(s) for the 3D Bruggeman effective permittivity model has the following form as a function of parameter

s = �2/(�2 � �1) on the complex s-plane:

FðsÞ ¼ 1� �
�

�2
¼ 1� c

4�2
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
�2

� �2

þ 8
�1

�2

s
¼ 3

4
� 1� 3f

4s
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 1� 1

s

� �
þ 1� 3f � 1

s

� �2
s

¼ 3
4
� 1� 3f

4s
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9s2 � 6ðf þ 1Þsþ ð3f � 1Þ2

s2

s
: ð5Þ

We can check that as expected, F(s) ? 0 as s ?1. We assume here that �2 – 0, otherwise we consider a symmetric analytic
representation on a complex plane of variable t = �1/(�1 � �2).

Theorem 1. Let l(x) represent the spectral measure function. The spectral function F(s) in (5) has an analytic Stieltjes integral
representation on the complex plane of variable s, s = x + iy:

FðsÞ ¼ A0HðmÞ
s
þ
Z 1

0

dlðxÞ
s� x

¼ A0HðmÞ
s
þ
Z 1

0

mðxÞdx
s� x

; ð6Þ

where the function H(m) is the Heaviside step function, the parameters m and A0 are

m ¼ f � fc; A0 ¼ 3m=2 ð7Þ

and the spectral density function m(x) is

mðxÞ ¼
1

4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9x2 þ 6ðf þ 1Þx� ð3f � 1Þ2

q
if x1 < x < x2;

0 if x 6 x1 or x P x2;

(
ð8Þ

where

x1;2 ¼
f þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p
3

; 0 6 x1 < x2 < 1: ð9Þ
To prove Theorem 1, we first derive the spectral density formula (8) using Stieltjes inversion formula

mðxÞ ¼ � 1
p

lim
y!0þ

ImFðxþ iyÞ: ð10Þ

In fact, for s – 0 and a fixed volume fraction f of one component in a two-phase composite (0 < f < 1), the quadratic inside the
square root of (5) is zero at the points

x1;2 ¼
f þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p
3

; 0 6 x1 < x2 < 1: ð11Þ

7094 D. Zhang et al. / Applied Mathematics and Computation 217 (2011) 7092–7107



Author's personal copy

which can be verified using the quadratic formula. We see that for real values of s, the quadratic under the square root of (5)
is negative for x 2 (x1,x2) and positive outside. In particular, we can define the square root (and hence the function F(s)) to be
analytic on the whole complex plane, with only a finite cut removing the interval (x1,x2), and the point zero, from the domain
of analyticity.

To ensure that F(s) ? 0 as s ?1, we have to choose the sign of the square root in (5) to be positive for real values for
s > x2. By analyticity, as we rotate 180 degrees from real s > x2 to real s < x2 through the upper half plane, the square root ro-
tates through 90 degrees, giving a pure imaginary root, with positive imaginary part. Thus, by continuity we get

Fðxþ 0þiÞ ¼ 3
4
� 1� 3f

4x
� i

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j9x2 � 6ðf þ 1Þxþ ð3f � 1Þ2j

x2

s
; 8x 2 ðx1; x2Þ: ð12Þ

Noting that only the square root term in (12) gives an imaginary part, we see immediately that

� 1
p lim

y!0þ
Im Fðxþ iyÞ ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j9x2 � 6ðf þ 1Þxþ ð3f � 1Þ2j

x2

s
; 8x 2 ðx1; x2Þ: ð13Þ

Since the term in the absolute value is negative when x 2 (x1,x2), (13) can be simplified as

� 1
p

lim
y!0þ

Im Fðxþ iyÞ ¼ 1
4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9x2 þ 6ðf þ 1Þx� ð3f � 1Þ2

q
; 8x 2 ðx1; x2Þ: ð14Þ

On the other hand, for real values of x outside of (x1,x2), the square root in (5) is a real number, so that F(x + 0+i) is real, its
imaginary part is zero, and thus

� 1
p

lim
y!0þ

Im Fðxþ iyÞ ¼ 0; 8x R ðx1; x2Þ: ð15Þ

From the Stietjes inversion formula (10), the limits (14) and (15) show that

mðxÞ ¼
1

4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9x2 þ 6ðf þ 1Þx� ð3f � 1Þ2

q
; x 2 ðx1; x2Þ;

0 otherwise;

(
ð16Þ

where x1, x2 are given in (9).
To complete the proof of Theorem 1, the following lemmas will be used to directly derive the Stieltjes integral represen-

tation formula (6).

Lemma 1. For any complex number a with jaj > 1, the integral identityZ 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

wþ a
dw ¼ ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

Þp ð17Þ

holds.

Proof. This is a standard integral identity on the real line, for real a > 1, as can be verified by Mathematica or a table of inte-
grals. The integrand on the left is analytic in variable a and hence the parameterized integral can be extended to an analytic
function on most of the complex plane, only excluding the real interval [�1,1], which is the interval of integration.

Similarly, we extend the real root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

to the complex-valued function vðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

, choosing a branch cut so that it
is continuous and analytic on most of the complex plane, only excluding the interval [�1,1]. We choose signs so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

is positive for real a > 1, and as a consequence of the choice of branch cut we will have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

negative for real a < �1. In
fact, we may note that

vðaÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

a2

r
for all jaj > 1; ð18Þ

where we use the usual power series expansion for the square root on the unit disk centered at 1.
Therefore, we have the signs correct and the two sides of Eq. (17) agree for jaj > 1 in the complex plane. By analyticity,

they agree on the entire region on which they are analytic, namely the complex plane with the real interval [�1,1] removed.
This completes the proof of lemma. h

Lemma 2. Let a and b be complex numbers, a – b, satisfying jaj > 1 and jbj > 1. The integral identityZ 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

ðwþ aÞðwþ bÞ dw ¼ p
b� a

a� bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p� �

ð19Þ

holds.
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Proof. For any complex numbers a, b with a – b, jaj > 1 and jbj > 1, a partial fraction expansion of the integrand on the left
hand side of (19) shows thatZ 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

ðwþ aÞðwþ bÞ dw ¼ 1
b� a

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

wþ a
dw� 1

b� a

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

wþ b
dw

¼ p
b� a

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p� �

� p
b� a

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q� �
¼ p

b� a
a� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p� �

ð20Þ

by Lemma 1. This completes the proof of lemma. h

Now we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. The spectral density function m(x) in (8) can be rewritten as

mðxÞ ¼ 1
4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6ðx� f Þ2 � 3ðxþ f � 1Þ2

q
; for x1 < x < x2; ð21Þ

where the values of x1, x2 are given in (9). We now intend to directly evaluate the integral

GðsÞ ¼
Z 1

0

mðxÞ
s� x

dx ¼ 1
4p

Z x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6ðx� f Þ2 � 3ðxþ f � 1Þ2

q
xðs� xÞ dx: ð22Þ

We introduce the variable u = x�(1 + f)/3, in terms of which the function G(s) can be rewritten as

GðsÞ ¼ 1
4p

Z u2

u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ � 9u2

p
ðuþ ð1þ f Þ=3Þðs� u� ð1þ f Þ=3Þdu; ð23Þ

where u1 = x1�(1 + f)/3 and u2 = x2 � (1 + f)/3. Making a second change of variable with w ¼ 3u=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p
, we obtain

GðsÞ ¼ �3
4p

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2
p

wþ 1þfffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1�f Þ
p

� �
wþ 1þfffiffiffiffiffiffiffiffiffiffiffiffi

8f ð1�f Þ
p � 3sffiffiffiffiffiffiffiffiffiffiffiffi

8f ð1�f Þ
p

� �dw: ð24Þ

The integral on the right hand side of (24) has the same form of Eq. (19) as in Lemma 2, with

a ¼ 1þ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p and b ¼ 1þ f � 3sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p for 0 < f < 1: ð25Þ

Note that a is real, and greater than 1, since ð1þ f ÞP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p
, and b can be assumed large by suitable choice of the com-

plex variable s. Analytic continuation will imply agreement between F(s) and the integral representation (6) for all s in the
domain of analyticity. Hence we can apply Lemma 2 and solve for G(s) as

GðsÞ ¼ �3
4p

p
b� a

a� bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p� �

¼ �3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p
�3s

3sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ

p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f � 3sÞ2

8f ð1� f Þ � 1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f Þ2

8f ð1� f Þ � 1

s0@ 1A
¼ 3

4
þ 1

4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f � 3sÞ2 � 8f ð1� f Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f Þ2 � 8f ð1� f Þ

q� �
¼ 3

4
þ 1

4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9s2 � 6ð1þ f Þsþ ð1� 3f Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3f Þ2

q� �
¼ 3

4
� j1� 3f j

4s
þ 1

4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9s2 � 6ð1þ f Þsþ ð1� 3f Þ2

q
: ð26Þ

In order to move the variable s into the square root in the last term on the right hand side of (26), we rewrite this term by
denoting the complex variable s = jsjarg (s) with n = 0, 1 as in the following

1
4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 9� 6ð1þ f Þ

s
þ ð1� 3f Þ2

s2

 !vuut ¼ 1
4s
jsjeðargðsÞiþnpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6ð1þ f Þ

s
þ ð1� 3f Þ2

s2

 !vuut : ð27Þ

Since lims?1G(s) = 0 in (22), we must choose the branch cut with n = 1 on the right hand side of (27), so that

GðsÞ ¼ 3
4
� j1� 3f j

4s
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6ð1þ f Þ

s
þ ð1� 3f Þ2

s2

s
¼ 3

4
� j1� 3f j

4s
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9s2 � 6ðf þ 1Þsþ ð3f � 1Þ2

s2

s
: ð28Þ

It should be noted that

ð1� 3f Þ ¼ j1� 3f j þ 2ð1� 3f ÞHð3f � 1Þ; ð29Þ
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where H is the Heaviside step function. The function F(s) in (5) can be calculated directly in terms of G(s) in (28) as

FðsÞ ¼ 3f � 1
2s

Hðf � 1=3Þ þ GðsÞ: ð30Þ

Therefore, we obtain the Stieltjes integral representation

FðsÞ ¼ 3f � 1
2s

Hðf � fcÞ þ
Z x2

x1

mðxÞdx
s� x

¼ A0HðmÞ
s
þ
Z 1

0

mðxÞdx
s� x

: ð31Þ

Here the parameters m and A0 are given by

m ¼ f � fc; A0 ¼ 3m=2; f c ¼ 1=3: ð32Þ

Next we will examine the pole at s = 0 for the Stieltjes integral representation of F(s) in (31). For a small s, from (5) and (26),
we have

FðsÞ � �1� 3f
4s

� 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3f � 1Þ2

s2

s
¼ ð3f � 1Þ þ j3f � 1j

4s
; ð33Þ

which is zero when (3f � 1) is negative (i.e. F(s) has no pole at s = 0 in this case), and is just (3f � 1)/2s when (3f � 1) is po-
sitive. Thus, in the case where f 6 fc = 1/3, the Stieltjes integral representation

FðsÞ ¼
Z x2

x1

mðxÞdx
s� x

ð34Þ

holds because F(s) has no pole at the origin. In the case where f > fc = 1/3, from (33), we have to insert a pole at s = 0 with
residue (3f � 1)/2 and obtain

FðsÞ ¼ 3f � 1
2s

þ
Z 1

0

mðxÞ
s� x

dx; ð35Þ

which agrees with the integral representation (31). Therefore, from (31), (34) and (35), we conclude that

FðsÞ ¼

A0

s
þ
Z 1

0

mðxÞdx
s� x

if f c < f < 1;Z 1

0

mðxÞdx
s� x

if 0 < f 6 fc;

8>>><>>>: ð36Þ

where A0 = (3f � 1)/2, m(x) is given in (8) and (9). This completes the proof of theorem. h

Remark 1. An alternative proof of Theorem 1 based on the Stieltjes inversion formula (10) is given in Appendix A.
The spectral density function m(x) satisfies the sum rule:Z x2

x1

mðxÞdx ¼
Z x2

x1

dlðxÞ ¼ f : ð37Þ

The sum rule property (37) gives the zero moment l0 of the spectral measure l which can be used to calculate the volume
fraction f of one of the constituents from known effective complex permittivity of the composite.

3. Rational (Padé) approximation

In this section we discuss Padé approximation of the spectral function which allows us to construct accurate approxima-
tion to the continuous spectral density in the Bruggeman effective medium model using a small number of poles. Based on
the theory of reconstruction of the spectral measure from known effective permittivity developed in [10] and the approach
to reconstruction of the spectral measure using rational function approximation in [38,39], the spectral function l(x) in (6)
can be approximated by a step function with a finite number of steps, so that the spectral density function m(x) in (6) has the
form:

mðxÞ ’ m̂ðxÞ ¼
Xq

n¼1

Andðx� snÞ; x 2 ½0;1Þ; ð38Þ

where d(x) is the Dirac delta function. It was shown in [39], that the spectral properties of the related operator impose con-
straints on the amplitudes An and location of the poles s1,s2, . . . ,sq of the delta functions in this sum: 0 6 An < 1,
0 6 s1 < s2 < � � � < sq < 1. In this case, the function l(x) satisfying (6) can be approximated by

lðxÞ ¼
Z xþ

0
dlðtÞ ’

Z xþ

0
dl̂ðtÞ ¼

Xq

n¼1

An

Z xþ

0
dðt � snÞdt; ð39Þ

D. Zhang et al. / Applied Mathematics and Computation 217 (2011) 7092–7107 7097



Author's personal copy

so that

lðxÞ ’ l̂ðxÞ ¼
Xq

n¼1

AnHðx� snÞ; x 2 ½0;1Þ; ð40Þ

where H(x) is the Heaviside step function. The function l(x) defined for x 2 [0,1) is a non-decreasing, non-negative function
corresponding to the Stieltjes function F(s). Thus, the approximation bFðsÞ of the function F(s) is given by

FðsÞ ’ bF ðsÞ ¼Xq

n¼1

An

s� sn
ð41Þ

with constraints

0 6 sn < 1; 0 6 An < 1; 0 <
X

An < 1: ð42Þ

Here sn is the n-th simple pole on the unit interval with positive residue An, q is the total number of poles. Note that the effec-
tive permittivity of a composite material could be frequency dependent; it follows from (41) that the approximation of the
frequency-dependent effective permittivity �⁄ is given by

��ðxÞ ¼ �2ðxÞ½1� FðsÞ� ’ �2ðxÞ 1�
Xq

n¼1

An

s� sn

" #
; s ¼ �2ðxÞ

�2ðxÞ � �1ðxÞ
: ð43Þ

The real parameters An and sn in the representation (43) depend purely on the microgeometry of the composite.
The right hand side of (41) can be viewed as rational function approximation:

bF ðsÞ ¼X
n

An

s� sn
¼ /ðsÞ

wðsÞ ; ð44Þ

where the degree of the polynomial /(s) is lower than the degree of the polynomial w(s). Let p and q be the orders of poly-
nomials /(s) and w(s) with p 6 q, respectively. The rational [p,q]-Padé approximation of F(s) can be written as (see [1])

bF ðsÞ ¼ F ½p;q�ðsÞ ¼
/ðsÞ
wðsÞ ¼

a0 þ a1sþ a2s2 þ � � � þ apsp

b0 þ b1sþ b2s2 þ � � � þ bqsq
; ð45Þ

where al (l = 0,1, . . . ,p) and bk (k = 0,1, . . . ,q) are the coefficients of real polynomials /(s) and w(s), respectively. Since (38)
provides an approximation to a function in the unit interval, all the zeroes of the denominator w(s) should be simple and
all poles sn of the function F(s) lie in the interval [0,1). We normalize the polynomial coefficient b1 = 1 in the denominator
w(s); this allows us to model the physically realizable zero pole of F(s).

We further assume that the measurements �⁄(xj) of the effective permittivity �⁄ are available at sample frequencies xj

(j = 1,2, . . . ,N). The measured data pairs (xj,�⁄(xj)) can be transformed to data pairs (zj, fj) in the complex s-plane:

fj ¼ 1� �
�ðxjÞ
�2ðxjÞ

; zj ¼
�2ðxjÞ

�2ðxjÞ � �1ðxjÞ
; ðj ¼ 1;2; . . . ;NÞ: ð46Þ

Here fj is the measured value of the function F(s) at the sample point zj, fj = F(zj) with N being the total number of data points.
To formulate the optimization problem for the coefficients al’s and bk’s in (45), we require that the constructed approx-

imation bFðsÞ agreed with the measured values of F(s) at the points zj. Then Eq. (45) can be written as

/ðzjÞ
wðzjÞ

¼
a0 þ a1zj þ a2z2

j þ � � � þ apzp
j

b0 þ zj þ b2z2
j þ � � � þ bqzq

j

¼ fj; ð47Þ

where al (l = 0, . . . ,p), bk (k = 0, . . . ,q,k – 1) are required unknown coefficients. Eq. (47) is equivalent to following system

a0 þ a1zj þ � � � þ apzp
j � b0fj � b2fjz2

j � � � � � bqfjz
q
j ¼ fjzj; ðj ¼ 1;2; . . . ;NÞ: ð48Þ

Therefore, the system (48) for the unknown real coefficients al’s and bk’s of the rational approximation /(s)/w(s) can be fur-
ther expressed as the following system

Sc ¼ d; ð49Þ

where

S ¼

1 z1 z2
1 . . . zp

1 �f1 �f1z2
1 �f1z3

1 . . . �f1zq
1

1 z2 z2
2 . . . zp

2 �f2 �f2z2
2 �f2z3

2 . . . �f2zq
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 zN z2
N . . . zp

N �fN �fNz2
N �fNz3

N . . . �fNzq
N

0BBB@
1CCCA:
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c ¼ ½a0; a1; . . . ; ap; b0; b2; b3; . . . ; bq�>;d ¼ ½f1z1; f2z2; . . . ; fNzN �> ð50Þ

and the symbol [ � ]> indicates a transposed matrix. It is clear that in order for the Padé coefficients al’s and bk’s to be uniquely
determined, the total number of the measurements must be greater or equal to the number of coefficients, i.e., N > p + q + 1.
The reconstruction problem of determining the column vector c = [a0,a1, . . . ,ap,b0,b2, . . . ,bq]> of real coefficients in (49), (50)
is an inverse problem. It is ill-posed and requires regularization to develop a stable numerical algorithm. In the present work
we solve a constrained minimization problem described below with constraints given in (42).

Let complex matrix S be S = SR + iSI and the vector of data points d be d = dR + idI where subindices R and I stand for the
real and imaginary parts. To construct a real solution vector c of [p, q]-Padé coefficients for the problem (49), (50), we intro-
duce a minimization functional Tkðc;dR;dIÞ with a penalization term which constrains the set of minimizers. The inequal-
ities (42) for the residues and poles of the function F(s) are used to impose constraints for the set of minimizers of the
problem. We reformulate the problem as a constrained minimization using Tikhonov regularization [33] with the regular-
ization parameter k (0 < k < 1) to be chosen properly:

min
c

Tkðc;dR;dIÞ ¼min
c
fkSRc� dRk2 þ kSIc� dIk2 þ k2kck2g

s:t: 0 6 An < 1; 0 6 sn < 1; 0 <
X

An < 1; n ¼ 1;2; . . . ; q: ð51Þ

Here k�k denotes the usual Euclidean norm and parameters sn, An are poles and residues of the partial fractions decomposi-
tion (41) of the reconstructed [p,q]-Padé approximation of the spectral function. To find the minimizer of the problem, we
solve the corresponding Euler equation; its solution is given by

c ¼ S>R SR þ S>I SI þ kIpþqþ1
� 	�1

S>R dR þ S>I dI
� 	

: ð52Þ

Here Ip+q+1 denotes the (p + q + 1) � (p + q + 1) identity matrix. After reconstruction of the vector c of the coefficients of ra-
tional function approximation of bFðsÞ, its decomposition into partial fractions (41), gives [p,q]-Padé approximation of the
spectral function F(s).

In the next section, we show results of numerical simulations and application of the technique to the problem of estima-
tion of volume fractions of constituents in the mixture, which is a particular case of the problem of extraction of information
about structural parameters of composites. Indeed, it was shown in [5] for a case of discrete spectral density function in ana-
lytical representation, that the volume fraction f of subdomains occupied by the first material in composite is a sum of all
residues in the analytical integral representation:X

An ¼ f : ð53Þ

The reconstructed Padé approximation, function bFðsÞ, can be used to calculate the volume fraction of the first material in the
composite using formula (53) which gives an approximation to the sum rule (37).

4. Numerical examples

This section describes numerical experiments using the inversion technique in Section 3 applied to the problem of recon-
struction of the spectral density of the 3D Bruggeman EMA model derived in Section 2. To demonstrate the effectiveness of
the method, we apply it to the problem of recovering the volume fractions of the constituents from the effective permittivity
of the Bruggeman composite.

3D Bruggeman EMA model was used to simulate the effective complex permittivity of the two-phase composite material
for a range of frequencies, then these simulated values were taken as data for the rational approximation algorithm which
reconstructs poles and residues of the approximation bFðsÞ. The approximation m̂ðxÞ of the spectral density function m(x) at
each location of the reconstructed poles sn with corresponding residues An is calculated using the following formula

dlðsnÞ
dx

¼ mðsnÞ � m̂ðsnÞ ¼
An

ðsnþ1 � sn�1Þ=2
; ðn ¼ 1;2; . . . ; q0Þ ð54Þ

where s0 ¼ x1; sq0þ1 ¼ x2, the values of x1, x2 are given in (9), and q0 is the total number of the validly reconstructed poles of
spectral function.

We model a frequency-dependent metallic particles composite of magnesium and magnesium fluoride (MgMgF2) using
the described 3D Bruggeman EMA model. The frequency-dependent permittivity of the metallic particles of magnesium (Mg)
taken as inclusion material in the composite, is given by the Drude dielectric model (see [20]):

�1 ¼ �metalðxÞ ¼ 1�
x2

p

xðxþ is�1Þ : ð55Þ

Here x is the circular frequency, xp is the plasma frequency, s is the relaxation time and i ¼
ffiffiffiffiffiffiffi
�1
p

. The parameter xp and the
relaxation time s of the dielectric metallic grains of magnesium (Mg) are given in Table 1. The permittivity of magnesium
fluoride ( MgF2) considered as the background matrix material in the mixture, is taken as a dispersionless constant,
�2 = 1.96, it is shown in Table 1 as well. The frequency-dependent values of the effective complex permittivity �⁄ for the
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mixture of MgMgF2 with magnesium (Mg) inclusions were simulated in a range of frequency: 0 6x 6xp = 9.4 � 1015 s�1

using described model of microstructure of composite materials. Two cases of the composites of magnesium and magnesium
fluoride (MgMgF2) with low volume fraction and large volume fraction of the magnesium (Mg) inclusion phase are tested in
the numerical experiments.

4.1. Results for low volume fraction f (0 < f 6 1/3 )

The recovered poles and residues of the spectral function for 3D Bruggeman EMA model with volume fraction f = 0.20 of
magnesium (Mg) component are shown in the left part of Fig. 1 for the case p = q = 14 and in the right part of Fig. 1 for the
case p = q = 10. Shown are results of inversion without constraints in the inversion procedure when no noise was added to
the data. It can be seen from the left part of Fig. 1 that there are 9 validly reconstructed poles which are located between
0.023 and 0.777 in the unit interval [0,1) and the other 5 poles located off the unit interval in the complex s-plane. The left
part of Fig. 2 illustrates the recovery of valid poles and residues of the spectral function for 3D Bruggeman EMA model for the
case with constraints in the inversion process. The volume fraction of the magnesium (Mg) component is calculated by the
sum of residues corresponding to validly reconstructed poles using formula (53) as f ¼

P
An � 0:1999986623 with q0 = 9 for

the case when p = q = 14 and f ¼
P

An � 0:2000000075 with q0 = 10 when p = q = 10, respectively. We compared analytically
and numerically calculated spectral density functions. The right part of Fig. 2 shows the true and computed spectral density
functions calculated using formula (54). The true and computed real and imaginary parts of F(s) at 30 data points are

Table 1
Physical parameters of complex permittivity of MgMgF2 composite.

Material s xp Material Permittivity �2

Mg 2.5 � 10�16 s 9.4 � 1015 s�1 MgF2 1.96
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Fig. 1. Poles and residues of the spectral function recovered without constraints for 20%Mg-80%MgF2 mixture with p = q = 14 (left) and p = q = 10 (right).
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Fig. 2. Valid poles and residues of the spectral function (left) and the spectral density function m(x) (right) recovered with constraints for 20%Mg-80%MgF2

mixture (p = q = 14 and p = q = 10).
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demonstrated in left part of Fig. 5. The imaginary part of the spectral function F(s) is a non-positive function in the complex s-
plane.

4.2. Results for large volume fraction f (1/3 < f < 1 )

For large volume fraction of the magnesium inclusion phase in the mixture of magnesium and magnesium fluoride
(MgMgF2), the spectral function exhibits different behavior compared with the case of low volume fraction of inclusion com-
ponent. There is an additional isolated pole of the spectral function which corresponds to the delta function of the spectral
density function at the origin. Fig. 3 shows the recovered poles and residues of the spectral function without constraints in
the inversion process for different orders p = q = 17 (left) and p = q = 13 (right) for 75%Mg–25%MgF2 mixture when there is no
noise in the data. The additional isolated pole with amplitude A0 = 0.625 is located at s = 0. There are other 9 validly recon-
structed poles of small amplitudes lying in the unit interval between 0.175 and 0.992 shown in the left part of Fig. 4. The
right part of Fig. 4 shows the analytical spectral density function and the one numerically reconstructed using Padé approx-
imation of orders p = q = 17 and p = q = 13. The volume fraction of the magnesium (Mg) inclusion phase is estimated fairly
well using formula (53) calculated as f ¼

P
An ’ 0:749999773 for p = q = 17 and f ¼

P
An ’ 0:749999952 for p = q = 13.

The true effective permittivity �⁄ used at 40 data points and computed effective permittivity are illustrated in the right part
of Fig. 5.

4.3. Sensitivity analysis

The purpose of the next series of computations is to numerically examine the stability of the calculated volume fractions
of magnesium (Mg) component in the mixture of magnesium and magnesium fluoride (MgMgF2) for the 3D Bruggeman
effective medium model. To simulate the noisy data, we used a uniformly distributed random noise calculated as percentage
of the true value of effective permittivity �⁄ at each measured point of 40 sample data in the same range of frequency as
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Fig. 3. 3D Bruggeman EMA model of 75%Mg-25%MgF2 composite. Poles and residues reconstructed without constraints, Padé approximations of order
p = q = 17 (left) and p = q = 13 (right).
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Fig. 4. Reconstructed with constraints poles and residues (left) and spectral density function m(x) (right) for 3D Bruggeman EMA model of 75%Mg-25%MgF2

mixture (p = q = 17 and p = q = 13).
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described in this section. This sensitivity test was done with a Padé approximation of order p = q = 7. A summary of the sen-
sitivity analysis for the calculated volume fractions of magnesium component for MgMgF2 composites of various volume
fractions of magnesium inclusion phase using data with 1%, 3%, 5% noise is shown in Table 2. The first row in the table shows
the true volume fractions of Mg component and the other three rows present the calculated volume fractions of the Mg
phase. The results of computations show that even with added noise, the recovered volume fractions of magnesium compo-
nent agree with the true values. This demonstrates the stability of the reconstruction algorithm.

5. Conclusion

In this paper, we have presented the derivation of an analytic Stieltjes integral representation for the 3D Bruggeman effec-
tive medium model which has continuous spectral density function. The spectral function containing important information
about the microgeometry of the medium can be used to find the effective behavior of heterogeneous material, it also can be
used to infer information about the composite’s structure. We used constrained rational Padé algorithm [39] to construct a
low order discrete approximation of the continuous spectral density function, such approximation consists of small number
of poles. Using derived Stieltjes integral representation, we investigated efficiency of the constrained Padé approximation
method for inverse homogenization for the case of Bruggeman composite model with continuous spectral density. The per-
formed numerical experiments for estimation of the fractions of components in a mixture of magnesium and magnesium
fluoride demonstrate the effectiveness of the algorithm.
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Appendix A. An alternative proof of Theorem 1 based on Stieltjes inversion formula

Here we first intend to show that the spectral density function m(x) in (8) is equivalently given by

mðxÞ ¼
1

4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ � ð3x� 1� f Þ2

q
if x1 < x < x2;

0 if x 6 x1 or x P x2;

(
ðA:1Þ
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Fig. 5. Left: True and computed real and imaginary parts of F(s) for 3D Bruggeman EMA model of 20%Mg-80%MgF2 mixture (p = q = 14 and p = q = 10). Right:
True and computed real and imaginary parts of �⁄ for 3D Bruggeman EMA model of 75%Mg-25%MgF2 composite (p = q = 17 and p = q = 13).

Table 2
Volume fractions calculated for the 3D Bruggeman EMA model using Padé approximation of order p = q = 7 at 40 sample data points with added noise levels of
1%, 3%, 5%.

Noise (%) f = 0.05 f = 0.15 f = 0.25 f = 0.35 f = 0.45 f = 0.55 f = 0.65 f = 0.75

1 0.050097 0.149548 0.250053 0.349527 0.449391 0.550156 0.649809 0.750267
3 0.050317 0.148717 0.251254 0.350853 0.450891 0.550832 0.653160 0.749347
5 0.051151 0.147860 0.252113 0.351477 0.452154 0.551624 0.655060 0.745581
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where

x1;2 ¼
1
9

4þ 3m	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3mÞð4� 6mÞ

ph i
; 0 6 x1 < x2 < 1: ðA:2Þ

In fact, for s = x + iy, the complex spectral function F(s) in (5) can be written explicitly in terms of x and y as

Fðxþ iyÞ ¼ 3
4
� ð1� 3f Þx

4ðx2 þ y2Þ � i
ð3f � 1Þy
4ðx2 þ y2Þ �

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ ig4

q
; ðA:3Þ

where

g3 ¼
ðx2 þ y2 � ð3f � 1ÞxÞ2 � y2ð3f � 1Þ2

ðx2 þ y2Þ2
� 8g1; ðA:4Þ

g4 ¼
2yð3f � 1Þðx2 þ y2 � ð3f � 1ÞxÞ

ðx2 þ y2Þ2
þ 8yg2 ðA:5Þ

and

g1 ¼
x

x2 þ y2 � 1; g2 ¼
1

x2 þ y2 ; 1� 1
s
¼ �g1 þ iyg2: ðA:6Þ

Let w denote expression under the square root in (A.3), w = g3 + ig4 = jg3 + ig4jeih, where h = arg (w) 2 [0,2p), so that

cos h ¼ g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

q ; sin h ¼ g4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

q : ðA:7Þ

Thus, the imaginary part of the square root term in (A.3) can be expressed as

Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ ig4

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
hþ 2kp

2

� �
; k ¼ 0;1: ðA:8Þ

In the following analysis, it should be noted that the spectral density function m(x) is a real and non-negative function which
is defined in the unit interval x 2 [0,1] by the Stieltjes inversion formula (10). In order to obtain the non-negative real-valued
function m(x) in the unit interval, the imaginary part of the square root term in (A.3) should be positive so that we must
choose the positive sine function in (A.8). This requires k = 0 due to the fact that function sin (p + h/2) < 0 when k = 1 in
(A.8). Thus, from (A.8), the imaginary part of the complex function F(x + iy) in (A.3) must have the following form

ImFðxþ iyÞ ¼ � ð3f � 1Þy
4ðx2 þ y2Þ �

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
h
2
; ðA:9Þ

where g3 and g4 are given in (A.4) and (A.5), respectively.
Case I: x 2 (0,1] and volume fraction f 2 (0,1). For a fixed x – 0, taking limit as y goes to 0+ for the functions g1, g2, g3 and g4

in (A.4)–(A.6), we obtain

lim
y!0þ

g1 ¼
1
x
� 1; lim

y!0þ
g2 ¼

1
x2 ; lim

y!0þ
g4 ¼ 0 ðA:10Þ

and

lim
y!0þ

g3 ¼
1
x2 ½ð3x� ð1þ f ÞÞ2 � 8f ð1� f Þ�: ðA:11Þ

The right hand side function in Eq. (A.11) is a concave upward quadratic polynomial in x which has two different roots in the
unit interval:

x1;2 ¼
1
9

4þ 3m	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3mÞð4� 6mÞ

ph i
; 0 6 x1 < x2 < 1; ðA:12Þ

where m = f � fc, so that

lim
y!0þ

g3 < 0 where x1 < x < x2 ðA:13Þ

and

lim
y!0þ

g3 > 0 where x < x1 or x > x2: ðA:14Þ

We consider separately the two cases given in (A.13) and (A.14). It is seen from (A.13) that for x 2 (x1,x2), the function
g3(x,y) < 0 for sufficiently small positive values of y. Hence, the angle h of the complex number w must be restricted to
the interval h 2 (p/2,3p/2). Thus, from the fact that
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lim
y!0þ

cos h ¼ �1; lim
y!0þ

sin h ¼ 0; ðA:15Þ

we get

lim
y!0þ

h ¼ p: ðA:16Þ

Therefore, taking the limit in (A.9) as y goes to 0+, it follows from (A.16) that

lim
y!0þ

ImFðxþ iyÞ ¼ �1
4

lim
y!0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
h
2

� �
¼ �1

4
lim
y!0þ

ffiffiffiffiffiffiffiffi
jg3j

p
: ðA:17Þ

By substituting (A.17) into (10), the spectral density function m(x) is obtained as

mðxÞ ¼ 1
4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f ð1� f Þ � ð3x� 1� f Þ2

q
if x1 < x < x2: ðA:18Þ

For the second case x < x1 and x > x2, (A.14) gives that g3(x,y) > 0 for sufficiently small positive values of y, so that the angle h
of the complex number w must be in the interval h 2 (0,p/2)

S
(3p/2,2p). Thus,

lim
y!0þ

cos h ¼ 1; lim
y!0þ

sin h ¼ 0 ðA:19Þ

and we obtain

lim
y!0þ

h ¼ 2lp; l ¼ 0;1: ðA:20Þ

By substituting (A.20) into (10) and (A.17), we obtain for x < x1 and x > x2 (l = 0,1):

mðxÞ ¼ 1
4p

lim
y!0þ

Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ ig4

q
¼ 1

4p
lim
y!0þ

ffiffiffiffiffiffiffiffi
jg3j

p
sinðlpÞ ¼ 0: ðA:21Þ

From (A.18) and (A.21), we conclude that (A.1) holds where x1 and x2 are given in (A.12).
It should be noted that when volume fraction f = fc = 1/3, the spectral density function in (A.1) has the following simple

form

mðxÞ ¼
1

4px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð8� 9xÞ

p
if 0 < x < 8

9 ;

0 if 8
9 6 x 6 1:

(
ðA:22Þ

(A.22) gives a maximal subinterval (0,8/9) 
 [0,1] in which the function m(x) is positive.
Next, we consider asymptotic behavior of the imaginary part of the spectral function F(s), i.e., ImF(x + iy) when x ? 0, to

analyze the behavior of the function m(x) at the origin. For sufficiently small positive x (i.e., x � 0),we introduce polar coor-
dinates x = rcos/, y = rsin/ in the first quadrant where r > 0 and p/4 < / 6 p/2. The real and imaginary parts for the complex
number w = g3 + ig4 = jg3 + ig4jeih in (A.4), (A.5) where h 2 [0,2p) can be represented as

g3 ¼ ½9r2 � 6rð1þ f Þ cos /þ ð3f � 1Þ2 cosð2/Þ�=r2; ðA:23Þ
g4 ¼ ½ð8þ 2ð3f � 1ÞÞr sin /� ð3f � 1Þ2 sinð2/Þ�=r2: ðA:24Þ

Case II: x � 0 and volume fraction f – 1/3. In this case, for sufficiently small r, it is seen from (A.23), (A.24) that we must
have h 2 (p/2,3p/2) because g3 < 0, and we also have

lim
r!0

tan h ¼ lim
r!0

g4

g3
¼ � tanð2/Þ; p

4
< / 6

p
2
; ðA:25Þ

so that h = (l + 1)p � 2/ with l = 0, 1. It should be noted that if l = 0, i.e., h = p � 2/, this results in h 2 [0,p/2) for / 2 (p/4,p/2]
which contradicts h 2 (p/2,3p/2). Therefore, l should be equal to 1, so that h = 2p � 2/ 2 [p,3p/2) 
 [0,2p) for / (p/4 < / 6
p/2).

For sufficiently small r, the leading term O(1/r2) of the modulus of w, w = g3 + ig4 = jg3 + ig4jeih is obtained from (A.23),
(A.24) as

jg3 þ ig4j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

q
¼ ð3f � 1Þ2

r2 þ oðr�2Þ; ðA:26Þ

the sine function in (A.9) becomes sinðh=2Þ ¼ sinðp� /Þ, and (A.9) becomes

ImFðxþ iyÞ ¼ � ð3f � 1Þy
4ðx2 þ y2Þ �

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sinðp� /Þ þ oðr�2Þ: ðA:27Þ
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Therefore, for small positive x, the leading order term in (A.27) has the form

ImFðxþ iyÞ ¼ � ð3f � 1Þy
4ðx2 þ y2Þ �

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin / ¼ � ð3f � 1Þy
4ðx2 þ y2Þ �

j3f � 1j
4r

sin /: ðA:28Þ

We note that sin/ = y/r and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, so that the Dirac delta function can be written as

dðxÞ ¼ 1
p

lim
y!0þ

y
x2 þ y2 ¼

1
p

lim
y!0þ

sin /
r

: ðA:29Þ

Therefore, by substituting (A.28) into (10), and taking the limit as y approaches to 0+, the non-negative spectral density func-
tion at the origin is obtained as

mðxÞ ¼ 3f � 1
4

dðxÞ þ j3f � 1j
4

dðxÞ; ðx � 0Þ: ðA:30Þ

Case III: x � 0 and volume fraction f = fc = 1/3. In this case, the spectral function F(s) has a simple form of

FðsÞ ¼ 3
4
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
9� 8

s

r
ðA:31Þ

and (A.23), (A.24) become

g3 ¼ 9� 8 cos /
r

; g4 ¼
8 sin /

r
> 0;

p
4
< / 6

p
2

ðA:32Þ

for sufficiently small r. For such a small r, the angle h of the complex number w = g3 + ig4 must be restricted to the interval
(0,p). (A.32) yields to

lim
r!0

tan h ¼ lim
r!0

g4

g3
¼ � tan /;

p
4
< / 6

p
2

ðA:33Þ

so that h = (l + 1)p � / with l = 0, 1. It should be noted that l cannot be equal to 1 because if l = 1, i.e., h = 2p � /, then h 2 [3p/
2,7p/4) for / 2 (p/4,p/2] which contradicts h 2 (0,p). Therefore, l should be equal to 0, so that h = p � / (p/4 < / 6 p/2).

For small r, the leading term O(1/r) of the modulus of w, w = g3 + ig4 = jg3 + ig4jeih can be calculated using (A.32) as

jg3 þ ig4j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

q
¼ 8

r
þ oðr�1Þ ðA:34Þ

and (A.9) becomes

ImFðxþ iyÞ ¼ �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
p� /

2

� �
þ o r�

1
2

� �
: ðA:35Þ

Therefore, for small positive x and y, the leading order term in (A.35) has the form

ImFðxþ iyÞ ¼ �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

cos
/
2
þ oðr�1

2Þ ¼ �
ffiffiffi
8
r

r
cos

/
2
þ oðr�1

2Þ: ðA:36Þ

For small positive x and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, the leading term on the right hand side of (A.36) as y goes to 0+ is a bounded integrable

function of x, i.e.,

m1ðxÞ ¼ �
Z x

0
lim
y!0þ

ImFðt þ iyÞdt 6
Z x

0
2
ffiffiffi
2
p

t�
1
2 cos

/
2

dt ¼ 4
ffiffiffiffiffiffi
2x
p

cos
/
2
6 4

ffiffiffi
2
p

; ðA:37Þ

which implies that there is no delta function at the origin in the representation of the spectral density function. From the
analysis of Cases I, II and III, we conclude that (36) holds. This completes the proof of theorem. h

Remark 2. An alternative proof of Case II and Case III is given in Appendices B and C, respectively.

Appendix B. An alternative proof of Case II

Let x = 0, f – 1/3 and / = p/2 in (A.23) and (A.24), then (A.23) and (A.24) become

g3 ¼ 9� ð3f � 1Þ2

y2 < 0; g4 ¼
6ð1þ f Þ

y
> 0 ðB:1Þ

for sufficiently small positive y. Thus, the angle h of w = g3 + ig4 must be in the second quadrant, i.e., h 2 (p/2,p). Equations in
(B.1) imply

lim
y!0þ

tan h ¼ lim
y!0þ

g4

g3
¼ lim

y!0þ

6ð1þ f Þy
9y2 � ð3f � 1Þ2

¼ 0�; ðB:2Þ
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so that h = p� or h = 2p�. It should be noted that h = 2p� is not the case due to h 2 (p/2,p). Thus, the angle of the complex
number w = g3 + ig4 must be h = p�, and from (B.1), the modulus of w is obtained as

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ ig4

q
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
p�

2
þ oðy�1Þ ¼ j3f � 1j

y
þ oðy�1Þ ðB:3Þ

for sufficiently small positive y. Therefore, (A.9) becomes

�ImFð0þ iyÞ ¼ 3f � 1
4y

þ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
p�

2
þ oðy�1Þ ¼ 3f � 1

4y
þ j3f � 1j

4y
þ oðy�1Þ: ðB:4Þ

When f < 1/3, it follows from (B.4) that the spectral density function at x = 0 is given as

mð0Þ ¼ � 1
p

lim
y!0þ

Fð0þ iyÞ ¼ 1
p

lim
y!0þ

3f � 1
4y

þ 1� 3f
4y

þ oðy�1Þ
� �

¼ 0: ðB:5Þ

When f > 1/3, noticing the spectral density formula (A.1), i.e., supp m(x) dx = [x1,x2] where 0 < x1 < x2 < 1 and taking the limit
as y approaches to 0+ on both sides of (B.4), we obtain, for x � 0,

mðxÞ ¼ � 1
p

lim
y!0þ

Fðxþ iyÞ ¼ 3f � 1
4

dðxÞ þ 3f � 1
4

dðxÞ ¼ 3f � 1
2

dðxÞ: ðB:6Þ

From (B.5) and (B.6) together with (A.1), we conclude that the spectral function F(s) has the following form

FðsÞ ¼ A0HðmÞ
s
þ
Z 1

0

mðxÞdx
s� x

; ðB:7Þ

where A0 = (3f � 1)/2 and the function H(m) is the Heaviside step function. This completes the proof of theorem. h

Appendix C. An alternative proof of Case III

Let x = 0, f = 1/3 and / = p/2. Then (A.32) reduces to

g3 ¼ 9; g4 ¼
8
y

ðC:1Þ

for sufficiently small positive y, and the angle h of w = g3 + ig4 must be in the first quadrant, i.e., h 2 (0,p/2). Equations in (C.1)
imply

lim
y!0þ

tan h ¼ lim
y!0þ

g4

g3
¼ 8

9
lim
y!0þ

1
y
¼ þ1; ðC:2Þ

so that h = p�/2 or h = 3p�/2. It should be noted that h = 3p�/2 is not the case due to h 2 (0,p/2). Thus, the angle of the com-
plex number w = g3 + ig4 must be h = p�/2, and from (C.1), the modulus of w is obtained as

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ ig4

q
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

¼

ffiffiffi
8
y

s
þ oðy�1

2Þ: ðC:3Þ

Therefore, (A.9) becomes

ImFð0þ iyÞ ¼ �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

3 þ g2
4

4
q

sin
h
2
þ oðy�1

2Þ ¼ �1
2

ffiffiffi
1
y

s
þ oðy�1

2Þ: ðC:4Þ

Let us assume that there exists a Dirac delta function d(x) which represents the spectral density function m(x) at the origin,
i.e., m2(x) = d(x). Then, for f = 1/3 and s = x + iy, (A.9) must have the following form

ImFðxþ iyÞ ¼ Im
Z 1

0

dðxÞdx
s� x

þ gðx; yÞ ¼ Im
1

0þ iy

� 

þ gðx; yÞ ¼ �1

y
þ gðx; yÞ; ðC:5Þ

where g(x,y) is a non-positive function which corresponds to the spectral measure at some points x away from the origin in
the unit interval, i.e., g(x,y) ? m(x) as y approaches to 0+ where 0 < x < x2. Letting x = 0 in (C.5), we get

�ImFð0þ iyÞ ¼ 1
y
þ positive function P

c1

y
ðC:6Þ

for some small positive y and constant c1 > 0. On the other hand, by changing the sign on both sides of the Eq. (C.4), we obtain

�ImFð0þ iyÞ ¼ 1
2

ffiffiffi
1
y

s
þ oðy�1

2Þ 6 c2ffiffiffi
y
p ðC:7Þ
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for some small positive y and constant c2 > 0. (C.6) and (C.7) imply that the following inequality must be held:

c1

y
6 �ImFð0þ iyÞ 6 c2ffiffiffi

y
p ; c1 > 0; c2 > 0 ðC:8Þ

for small enough positive y. Since the inequality in (C.8) is held for all small enough positive y, we must have c1 = 0, which
contradicts c1 > 0. We conclude that when the volume fraction is f = 1/3, the spectral density function cannot have delta func-
tion at the origin. This completes the proof of theorem. h
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