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Abstract. We consider a class of Hilbert-Schmidt integral operators with an isotropic, stationary kernel

acting on square integrable functions defined on flat tori. For any fixed kernel which is positive and decreas-

ing, we show that among all unit-volume flat tori, the equilateral torus maximizes the operator norm and
the Hilbert-Schmidt norm.

1. Statement of results and discussion

Let Ta,b be a unit-volume flat torus with parameters (a, b) ∈ U ⊂ R2 with

(1) U :=
{

(a, b) ∈ R2 : b > 0, a ∈ [0, 1/2], and a2 + b2 ≥ 1
}
.

The parametrization we use is fairly standard and will be introduced in detail in Section 2. The set U
is illustrated in Figure 1 and, in this notation, the square torus has parameters (a, b) = (0, 1) and the

equilateral torus has parameters (a, b) =
(

1
2 ,
√

3
2

)
. Consider the integral operator Af : L2(Ta,b) → L2(Ta,b)

with isotropic stationary kernel, f : R→ R, given by

Afψ(x) :=

∫
Ta,b

f
(
d2(x,y)

)
ψ(y) dy.

Here, d is the geodesic distance on Ta,b and f is evaluated at the squared distance. If

(2)

∫
Ta,b

∫
Ta,b

|f
(
d2(x,y)

)
|2 dxdy <∞,

then Af is a Hilbert-Schmidt integral operator, hence bounded and compact. Let ‖ · ‖L2(Ta,b) and ‖ · ‖H.S.
denote the L2(Ta,b)→ L2(Ta,b) and Hilbert-Schmidt operator norms respectively.

Theorem 1.1. Let f be a fixed positive and non-increasing function satisfying (2). Among unit-volume
flat tori, Ta,b, the equilateral torus is a maximizer of both ‖Af‖L2(Ta,b) and ‖Af‖H.S.. The square torus is a
critical point of these spectral quantities. If f is additionally assumed to be decreasing, then the equilateral
torus is the unique minimizer and the square torus is a saddle point of these spectral quantities.

Remark 1.2. A self-contained proof of Theorem 1.1 is given in Section 2. The result that the equilateral torus
is a maximizer follows from the Moment Lemma of László Fejes Tóth (see Remark 2.2). As we were unable
to find an English version of this lemma in the literature, we provide a translated proof of in Appendix B.
Here, we provide a self-contained, constructive proof of Theorem 1.1 that gives more precise insight into
spectral optimization problems over the family of flat tori considered. In particular, we emphasize that we
observe the square torus as a saddle point of the reported spectral quantities and gain fairly precise control
over the dependence on the parameters (a, b).

To prove Theorem 1.1, we obtain explicit expressions for ‖Af‖L2(Ta,b) and ‖Af‖H.S. and then use a
rearrangement method to show that the equilateral torus is maximal. The proof involves the rearrangement
of a six-sided polygon with some special properties. Generally speaking, rearrangement of polygons is
difficult, as symmetrization typically destroys polygonal structure, e.g., Steiner symmetrization introduces
additional vertices. In fact, as far as we know, it remains an open problem to prove the conjecture of George
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Figure 1. The set U , defined in (1), is shaded.

Pòlya and Gábor Szegő [PS51, Section 7], that among all N -gons of given area for fixed N ≥ 5, the regular
one has the smallest first Laplace-Dirichlet eigenvalue; see also [Hen06, Open Problem 2]. Theorem 1.1 is
most similar to a result of Marcel Berger, which shows that the maximum first eigenvalue of the Laplace-
Beltrami operator over all flat tori is attained only by the equilateral torus [Ber73; KLO16]. See also the
work of Baernstein [Bae97], in which heat kernels are studied over flat tori. Finally, the present work can in
some sense be seen as complementary to the lattice optimization problems of minimizing the Epstein zeta
energy [Ran53; Cas59; Dia64; Enn64] and the theta energy [Mon88], both of which are minimized by the
triangular lattice.

2. Proof of Theorem 1.1

Let B ∈ R2×2 have linearly independent columns. The lattice generated by the basis B is the set of
integer linear combinations of the columns of B, L(B) = B(Z2). Let B and C be two lattice bases. We recall
that L(B) and L(C) are isometric if there is a unimodular1 matrix U such that B = CU . The following
proposition gives a parameterization of the space of two-dimensional, unit-volume lattices modulo isometry.

Proposition 2.1. Every two-dimensional lattice with volume one is isometric to a lattice, La,b, parameter-
ized by the basis

Ba,b =

(
1√
b

a√
b

0
√
b

)
,

where the parameters a, b ∈ U and U is defined in (1) and illustrated in Figure 1.

For (a, b) ∈ U , we refer to La,b = Ba,b(Z2) as the lattice generated by vector (a, b). A proof of this
Proposition 2.1 is standard, but for completeness is provided in Appendix A.

A flat torus is a torus with a metric inherited from its representation as the quotient R2/L, where L is a
lattice. Tori are isometric iff the matrices of the generating lattices are equivalent via left multiplication by

1A matrix A ∈ Zn×n is unimodular if detA = ±1.
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an orthogonal matrix, see [Wol78]. Hence, by Proposition 2.1 a parameterization of the unit volume flat tori
is given by

Ta,b = R2/La,b, (a, b) ∈ U.
Let Λa,b = B−ta,b(Z2) be the dual lattice of La,b, namely the set of all vectors whose inner products with

each vector in La,b is an integer,

Λa,b = {y ∈ R2 : y · x ∈ Z for all x ∈ La,b};
see for instance [RS78, Chapter XIII.16]. For k ∈ Λa,b, a computation using lattice Fourier analysis shows
that

Af e
ık·x =

∫
Ta,b

f
(
d2(y, c)

)
e−ık·ydy eık·x ≡ γf (k) eık·x,

where c = ca,b is the center of Ta,b. For the representative parallelogram of Ta,b with (0, 0) in the bottom

left corner, we have ca,b =
(

(a+ 1)/(2
√
b), 1/(2

√
b)
)

. Thus Af is diagonalized by the Fourier Transform

with eigenvalues given by γf (k), k ∈ Λa,b. We observe that

γf (k) =

∫
Ta,b

f
(
d2(x, c)

)
e−ık·xdx ≤

∫
Ta,b

f
(
d2(x, c)

)
dx = γf (0),

and thus the largest eigenvalue of Af is given by γf (0),

(3) ‖Af‖L2(Ta,b) =

∫
Ta,b

f
(
d2(x, c)

)
dx.

Equation (3) also follows from Young’s inequality. We also compute

‖Af‖H.S. =

∫
Ta,b

f2
(
d2(x, c)

)
dx,(4)

where we used the assumption that |Ta,b| = 1.
From (3) and (4), the proof of Theorem 1.1 requires us to solve the following optimization problem

(5) max
(a,b)∈U

J(a, b) where J(a, b) :=

∫
Ta,b

f
(
d2(x, c)

)
dx.

We tile the plane with the torus Ta,b and consider the Dirichlet-Voronoi cell for the origin, Da,b, defined
as the set of points closer to the origin than any of the other lattice points. We define

y1(x) :=
1

2
√
b

(
(1− a)2

b
+ b

)
+

1− a
b

x,(6)

y2(x) :=
1

2
√
b

(
a2

b
+ b

)
− a

b
x,(7)

and

(8) x1 :=
1

2
√
b
, x2 :=

a− 1/2√
b

.

The Dirichlet-Voronoi cell for the origin can be explicitly written

Da,b = {(x, y) ∈ R2 : x ∈ [−x1, x1], y ≤ y1(x) ∀x ∈ [−x1, x2], y ≤ y2(x) ∀x ∈ [x2, x1],

y ≥ −y2(−x) ∀x ∈ [−x1,−x2], y ≥ −y1(−x) ∀x ∈ [−x2, x1]}.
This Dirichlet-Voronoi cell is illustrated in Figure 2 for a square torus (left), a torus Ta,b with (a, b) = (0.2, 1.2)
(center), and an equilateral torus (right). The vertices of the Dirichlet-Voronoi cell are concyclic; the
Dirichlet-Voronoi cell is a cyclic polygon with four vertices if a = 0 and six vertices if a ∈ (0, 1/2]. The
inradius is given by

r1 :=
1

2
√
b

and the circumradius is given by

r2 :=

√
(a2 + b2) ((a− 1)2 + b2)

4b3
> r1.
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Figure 2. An illustration of Da,b, the Dirichlet-Voronoi cell of the origin, for a square
torus (left), a torus with (a, b) = (0.2, 1.2) (center), and an equilateral torus (right). The
vertices of the Dirichlet-Voronoi cell are concyclic and both the incircle and circumcircle are
plotted.

For (a, b) ∈ U , the objective function, J(a, b), in (5) can be rewritten as an integral over the Dirchlet cell
where the distance is now simply the Euclidean distance to the origin,

(9) J(a, b) =

∫
Da,b

f
(
‖x‖2

)
dx, (a, b) ∈ U.

Remark 2.2. From (9), Theorem 1.1 now follows from the Moment Lemma of László Fejes Tóth, see Theorem
B.6 or, for example, [Fej72, p. 198], [Fej73], or [Gru99], [BC10]. Namely, if f is a non-increasing function and
D(p) any Dirichlet-Voronoi cell of a point p ∈ R2 with 6 vertices, we have

∫
D(p)

f
(
‖x− p‖2

)
dx ≤

∫
R

f
(
‖x‖2

)
dx,

where R is the regular 6-gon centered at the origin with |R| = |D(p)|. This result is intuitive; since f
is a positive and decreasing function, the optimal torus will be described by the parameters (a, b) ∈ U
such that the Dirichlet-Voronoi cell is most concentrated about the origin. The equilateral lattice has the
Dirichlet-Voronoi cell with the most symmetry, so intuitively it is the maximizer.

Remark 2.3. We will prove the statement in Theorem 1.1 which assumes that f is decreasing; the statement
for f non-increasing can be proved similarly.

We complete the proof by showing that when we continually rearrange the Dirichlet-Voronoi cell, first
increasing a and then decreasing b while keeping (a, b) ∈ U , the objective function is strictly increasing. This
implies that the maximum is attained uniquely by the equilateral torus. We proceed with a few preliminary
results, and then put them together to finish the proof.

We use the polar symmetry (x ∈ Ta,b =⇒ −x ∈ Ta,b) to reduce the integral in (9) to the upper half
plane. We obtain

(10) J(a, b) = 2

∫ x2

−x1

∫ y1(x)

0

f
(
x2 + y2

)
dydx+ 2

∫ x1

x2

∫ y2(x)

0

f
(
x2 + y2

)
dydx, (a, b) ∈ U.
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We compute the partial derivatives of J(a, b). The partial derivative of J(a, b) with respect to the parameter
a, is given by

∂a
1

2
J(a, b) =

∫ x2

−x1

f
(
x2 + y2

1(x)
)

(∂ay1(x)) dx+

∫ x1

x2

f
(
x2 + y2

2(x)
)

(∂ay2(x)) dx

=
1

b

∫ x2

−x1

f
(
x2 + y2

1(x)
)(a− 1√

b
− x
)
dx+

1

b

∫ x1

x2

f
(
x2 + y2

2(x)
)( a√

b
− x
)
dx

= −1

b

∫ x2

−x1

f
(
x2 + y2

1(x)
)(

x− a− 1√
b

)
dx(11)

+
1

b

∫ a√
b

x2

f
(
x2 + y2

2(x)
)( a√

b
− x
)
dx− 1

b

∫ x1

a√
b

f
(
x2 + y2

2(x)
)(

x− a√
b

)
dx.

The partial derivative of J(a, b) with respect to the parameter b is

∂b
1

2
J(a, b) =− 1

2b
3
2

∫ y2(x1)

0

f

(
1

4b
+ y2

)
dy

+

∫ x2

−x1

f
(
x2 + y2

1(x)
)

(∂by1(x)) dx+

∫ x1

x2

f
(
x2 + y2

2(x)
)

(∂by2(x)) dx.(12)

Lemma 2.4. For any integrable function f , ∂aJ(a, b) = 0 if either a = 0 or a = 1
2 . Furthermore, the square

(a, b) = (0, 1) and equilateral torus (a, b) =
(

1
2 ,
√

3
2

)
are critical points of J(a, b).

Proof. Setting a = 0 we have that x2 = −x1 and y2(x) =
√
b

2 . From (11), we obtain

∂a
1

2
J(a, b) = −1

b

∫ x1

−x1

f

(
x2 +

b

4

)
x dx = 0.

If, additionally b = 1, we have from (12) that

∂b
1

2
J(a, b) = −1

2

∫ x1

0

f

(
1

4
+ y2

)
dy +

∫ x1

−x1

f

(
x2 +

1

4

)
1

4
dx = 0.

For a = 1
2 , we have x2 = 0 and y2(x) = 1

2
√
b

(
1
4b + b

)
− 1

2bx = y1(−x). From (11), we obtain

∂a
1

2
J(a, b) = −1

b

∫ 0

−x1

f
(
x2 + y2

1(x)
)( 1

2
√
b

+ x

)
dx+

1

b

∫ x1

0

f
(
x2 + y2

1(−x)
)( 1

2
√
b
− x
)
dx

= 0.

If, additionally b =
√

3
2 , then we have y2(x) = x1

b −
1
2bx = y1(−x) and

∂by2(x) =
1

2b2
x = (∂by1)(−x).

Hence,

∂b
1

2
J(a, b) =− 1

2b
3
2

∫ x1
2b

0

f

(
1

4b
+ y2

)
dy +

1

b2

∫ x1

0

f
(
x2 + y2

2(x)
)
xdx.

Looking at the second integral, we complete the square in the argument of f ,

x2 + y2
2(x) =

1

b2

(
x− x1

2

)2

+
1

4b
.

Now letting z = 1
b

(
x− x1

2

)
, the second integral can then be rewritten

1

b2

∫ x1

0

f
(
x2 + y2

2(x)
)
xdx =

1

b2

∫ x1
2b

− x1
2b

f

(
1

4b
+ z2

)(
bz +

x1

2

)
bdz

=
x1

b

∫ x1
2b

0

f

(
1

4b
+ z2

)
dz,

which perfectly cancels the first integral. Thus, ∂bJ(a, b) = 0. �
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Figure 3. An illustration of how the Dirichlet-Voronoi cell, Da,b, changes between (a, b) =
(0.2, 1) and (a, b) = (0.3, 1).

Lemma 2.5. For any positive and decreasing function f , ∂aJ(a, b) > 0 for (a, b) ∈ U with a ∈ (0, 1/2).

Proof. Fix (a, b) ∈ U with a ∈ (0, 1). From (11), we write

∂a
1

2
J(a, b) ≡ −I1 + I2 − I3,

where

I1 :=
1

b

∫ x2

−x1

f
(
x2 + y2

1(x)
)(

x− a− 1√
b

)
dx

I2 :=
1

b

∫ a√
b

x2

f
(
x2 + y2

2(x)
)( a√

b
− x
)
dx

I3 :=
1

b

∫ x1

a√
b

f
(
x2 + y2

2(x)
)(

x− a√
b

)
dx.

The integrals defined in I1, I2 and I3 are non-negative. These integrals have a nice geometric picture, which
we illustrate in Figure 3. Here, we plot the Dirichlet-Voronoi cell for b = 1 and two different values of a:
a = 0.2 and a = 0.3. The three integrals each correspond to a piece of the Dirichlet-Voronoi cell that is being
added or removed as the parameter a is varied. We now transform each interval of integration to [−1, 1] so
we can compare the magnitude of the three integrals.

Integral 1. Let x = − 1−a
2
√
b
− a

2
√
b
z. Making this change of variables in I1, we obtain

I1 =
1

b

∫ 1

−1

a(1− a− az)
4b

f

(
b2 + (1− a)2

4b3
(b2 + a2z2)

)
dz

Define the argument of f ,

A1(z) :=
b2 + (1− a)2

4b3
(b2 + a2z2).

Note that A1(z) is even in z, so the term that is linear in z is zero. Thus, we can write

I1 =
1

16b2

∫ 1

−1

4a(1− a) f (A1(z)) (1− z) dz.

6



It will later be clear why we want the coefficient to contain the term (1− z).

Integral 2. Let x = 4a−1
4
√
b

+ 1
4
√
b
z. Making this change of variables in I2, we obtain

I2 =
1

16b2

∫ 1

−1

f (A2(z)) (1− z) dz,

where the argument of f is defined

A2(z) :=
a2 + b2

16b3
(
4b2 + (1− 2a− z)2

)
.

Integral 3. Let x = 1+2a
4
√
b
− 1−2a

4
√
b
z. Making this change of variables in I3, we obtain

I3 =
1

16b2

∫ 1

−1

(1− 2a)2 f (A3(z)) (1− z) dz,

where the argument of f is defined

A3(z) :=
a2 + b2

16b3

(
4b2 + ((1− 2a)z − 1)

2
)
.

Putting the pieces together. Note that the coefficients in I1 and I3 sum to 1,

4a(1− a) + (1− 2a)2 = 1.

Breaking I2 into two pieces, we can write

∂a
1

2
J(a, b) = −I1 + I2 − I3

= [4a(1− a)I2 − I1] +
[
(1− 2a)2I2 − I3

]
=

1

16b2

∫ 1

−1

4a(1− a) [f (A2(z))− f (A1(z))] (1− z) dz

+
1

16b2

∫ 1

−1

(1− 2a)2 [f (A2(z))− f (A3(z))] (1− z) dz(13)

We will show that ∂aJ(a, b) > 0 by showing that both of the integrands in (13) are positive.

Claim: For every z ∈ (−1, 1), A1(z) ≥ A2(z).
We compute

∂2
z (A1(z)−A2(z)) =

b2 + (1− a)2

2b3
a2 − a2 + b2

8b3

=
1

8b3
(
4a2(1− 2a)−

(
a2 + b2

) (
1− (2a)2

))
=

1− 2a

8b3
(
4a2 −

(
a2 + b2

)
(1 + 2a)

)
= −1− 2a

8b3
(
2a
(
a2 + b2

)
+ b2 − 3a2

)
≤ 0

as b2 ≥ 3a2. Since

A1(−1)−A2(−1) =
b2 + (1− a)2

4b3
(
a2 + b2

)
− a2 + b2

4b3

(
b2 + (1− a)

2
)

= 0,

A1(1)−A2(1) =
(1− 2a)

(
a2 + b2

)
4b3

≥ 0,

and A1(z)−A2(z) is a concave function, it follows that A1(z)−A2(z) ≥ 0 for all z ∈ (−1, 1).

Claim: For every z ∈ (−1, 1), A3(z) > A2(z).
7



We compute

A3(z) =
a2 + b2

16b3

[
4b2 + ((1− 2a)z − 1)

2
]

=
a2 + b2

16b3

[
4b2 + (1− 2a− z)2

+ 4a(1− a)(1− z2)
]

>
a2 + b2

16b3

[
4b2 + (1− 2a− z)2

]
= A2(z).

Since f is a decreasing function, these two claims show that the integrands in (13) are strictly positive
for every z ∈ (−1, 1). Thus, ∂aJ(a, b) > 0. �

Lemma 2.6. Let a = 1
2 and b >

√
3

2 and f a positive and decreasing function. Then ∂bJ(a, b) < 0.

Proof. In (12), we computed the partial derivative of J(a, b) with respect to the parameter b. For a = 1
2 , we

have x2 = 0,

y2(x) =
1

2
√
b

(
1

4b
+ b

)
− 1

2b
x = y1(−x),

and

∂by2(x) =
1

4
√
b

(
1− 3

4b2

)
+

1

2b2
x = (∂by1)(−x).

We obtain

∂b
1

2
J(a, b) =− 1

2b
3
2

∫ y2(x1)

0

f

(
1

4b
+ y2

)
dy

+

∫ 0

−x1

f
(
x2 + y2

2(−x)
)

(∂by2(−x)) dx+

∫ x1

0

f
(
x2 + y2

2(x)
)

(∂by2(x)) dx

=− 1

2b
3
2

∫ y2(x1)

0

f

(
1

4b
+ y2

)
dy + 2

∫ x1

0

f
(
x2 + y2

2(x)
)

(∂by2(x)) dx(14)

We denote the second integral in (14), by

K2 := 2

∫ x1

0

f
(
x2 + y2

2(x)
)

(∂by2(x)) dx.

Making the change of variables,

z =
4b2 − 1

2b

(
x− x1

2

)
,

we compute

x2 + y2
2(x) =

1 + 4b2

16b
+

1 + 4b2

(4b2 − 1)2
z2 and ∂by2(x) =

4b2 − 1

16b
5
2

+
z

b(4b2 − 1)
,

to obtain

K2 = 2

∫ z1

−z1
f

(
1 + 4b2

16b
+

1 + 4b2

(4b2 − 1)2
z2

)(
4b2 − 1

16b
5
2

+
z

b(4b2 − 1)

)
2b

4b2 − 1
dz

where z1 := 4b2−1

8b
3
2

. The term involving the z in the square brackets is an odd function and the term involving

the constant is even so we have

K2 =
1

2b
3
2

∫ z1

0

f

(
1 + 4b2

16b
+

1 + 4b2

(4b2 − 1)2
z2

)
dz

Finally noting that z1 = y2(x1), we obtain from (14),

∂b
1

2
J(a, b) =

1

2b
3
2

∫ z1

0

f

(
1 + 4b2

16b
+

1 + 4b2

(4b2 − 1)2
z2

)
− f

(
1

4b
+ z2

)
dz.

8



But for b ≥
√

3
2 , a simple calculation shows that

1

4b
+ z2 ≤ 1 + 4b2

16b
+

1 + 4b2

(4b2 − 1)2
z2, z ∈ (0, z1).

Thus, if f is a positive and decreasing function, this implies that ∂bJ(a, b) < 0 for a = 1
2 and b >

√
3

2 . �

Proof of Theorem 1.1. The preceding results are now put together as follows. We start with a flat torus, Ta,b
with (a, b) ∈ U . By Lemma 2.5, by continually rearranging the torus by increasing a, the objective function
is strictly increasing. We stop when a = 1

2 . We then continually rearrange the torus by decreasing b and by

Lemma 2.6, the objective function is again strictly increasing. We stop when b =
√

3
2 . Thus the maximum

is attained by the equilateral torus. This completes the proof. �

Remark 2.7. Interestingly, the square torus is a saddle point of J(a, b). This is a similar phenomenon to
that observed by spectral properties of the Laplacian on a Bravais Lattice, see [OM16].

Appendix A. Proof of Proposition 2.1

Consider an arbitrary lattice with unit volume. We first choose the basis vectors so that the angle between
them is acute. After a suitable rotation and reflection, we can let the shorter basis vector (with length 1√

b
)

be parallel with the x axis and the longer basis vector (with length
√

a2

b + b =
√

1
b (a2 + b2) ≥

√
1
b ) lie in

the first quadrant. Multiplying on the right by a unimodular matrix,

(
1 1
0 1

)
, we compute(

1√
b

a√
b

0
√
b

)(
1 1
0 1

)
=

(
1√
b

a+1√
b

0
√
b

)
.

Since this is equivalent to taking a 7→ a + 1, it follows that we can identify the lattices associated to the
points (a, b) and (a+ 1, b). Thus, we can restrict the parameter a to the interval [0, 1/2] by symmetry. For
a complete picture of this restriction and how the symmetry naturally arises, see [KLO16, Proposition 3.2
and Figure 3]. For more on flat tori, see also [Mil64; GT10; LS11]. �

Appendix B. A Translation of the Proof of The Fejes Tóth Moment Lemma

Here we translate and discuss László Fejes Tóth’s proof of his Moment Theorem, which was published in
German [Fej72] and Russian [Fej58]. Other references for the Moment Theorem include [Fej73] where a sum
of moments theorem is proved, [Gru99] where the sum of moments theorem is proved using the Moment
Lemma below, [BC10] where a new version of the Moment Theorem appears with quadratic forms instead
of moments, and [Gru07] which contains a very nice summary of Moment type results. See also [BPT14] for
an application of the Moment Theorem to block copolymer structures. This is by no means a complete list
of relevant references for the proofs and development of the Moment Theorem, but gives some idea of its
long and important history.

We present also László Fejes Tóth’s proof of his Moment Lemma, as given in [Fej63]. This Lemma is also
stated, but not proven in [Fej73; Gru99; Gru07]. Some of the arguments and notation have been slightly
modified from the original proof for clarification.

Theorem B.1. The Moment Theorem, [Fej72, p.80] Assume f : [0,∞) → R is a non-increasing function.
Let p1, . . .pn be n points in the plane and C ⊂ R2 a convex hexagon. Let d(p) = mini ‖p − pi‖ be the
distance from the point p to the set {pi}ni=1. It holds that

(15)

∫
C

f (d(p)) dp ≤ n ·
∫
σ

f (‖p‖) dp

where σ is a regular hexagon with volume |C|n and center o.
9



Tóth’s proof of Proposition B.1 relies on the Voronoi partition of the convex set C ⊂ R2 by the points
{pi}ni=1 and a careful analysis of the resulting partition components. Namely a rearrangement argument is
used to compare each partition component to a ball which circumscribes the regular hexagon σ. The proof
uses the following three lemmas, which we first prove. We note that Lemmas B.2 and B.3 are also proven in
[Imr64] and stated (but not proven) in [Fej63].

Lemma B.2. [Fej72, Lemma 1, p.82] Assume f : [0,∞) → R is a non-increasing function. Let K ⊂ R2

be a ball centered at o. Let S = S(s) be a circular segment parameterized by its volume, s = |S|. Then the
function

ω(s) :=

∫
S(s)

f (‖x‖) dx, 0 ≤ s < |K|/2

is convex.

Proof. Consider the circular segments with volumes s1 < s∗1 < s2 < s∗2 with s∗i − si = ε for i = 1, 2. Let ∆Si
for i = 1, 2 denote the (nearly trapezoidal) regions S(s∗i )\S(si). From Figure 4 it is clear that corresponding
points x1 ∈ ∆S1 and x2 ∈ ∆S2 satisfy ‖x1‖ > ‖x2‖. Noting that |∆S2| = |∆S1| and using the monotonicity
of f , we have that

ω(s∗1)− ω(s1) =

∫
∆S1

f (‖x‖) dx ≤
∫

∆S2

f (‖x‖) dx = ω(s∗2)− ω(s2).

Dividing both sides by ε and taking the limit s∗i → si for i = 1, 2, i.e., ε→ 0, we have that ω′(s1) ≤ ω′(s2)
which shows that ω is a convex function. �

o S(s)

K

o

K

∆S2

x2

∆S1

x1

Figure 4. Illustrations for the statement and proof of Lemma B.2. See [Fej72, Fig.78].

Lemma B.3. Assume f : [0,∞)→ R is a non-increasing function. Let a and b be two points contained in
the ball K centered at o. Let a′ and b′ be the points at the respective intersections between the rays −→oa and−→
ob with ∂K. Let R ⊂ K denote the region enclosed by the path defined by the segments a′a, ab, bb′, and
the circular arc ∠b′a′. Let S = S(s) denote the circular segment with volume s = |R|. It holds that

ω(s) :=

∫
S

f (‖x‖) dx ≤
∫
R

f (‖x‖) dx.

Proof. As in Figure 5, position the circular segment, S, so that there are two points, c and d, at ∂S ∩ ∂R
equidistant to o. Since, aside from c and d, each point of the region R \ S is closer to o then each point in
S \R, using the monotonicity of f , we have the inequality∫

R

=

∫
R∩S

+

∫
R\S

≥
∫
S∩R

+

∫
S\R

=

∫
S

,

where the integrand for each of these integrals is f (‖x‖) dx. �
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o

a′

a

b′

b

R

S

c

d

Figure 5. Illustrations for the statement and proof of Lemma B.3. See [Fej72, Fig.79].

The following Lemma is a summary of a discussion in [Fej72, p.14–16]. Since this discussion contains quite
a bit of supplementary information, we more closely follow [BR52].

Lemma B.4. Consider the Voronoi partition of a convex hexagon C ⊂ Rn by the points {pi}ni=1 ⊂ C. If
Pi denotes the number of vertices in the Voronoi cell for point pi and N =

∑n
i=1 Pi, then N ≤ 6n.

Proof. Let C = ∪ni=1Ti denote the Voronoi partition. Denote the unbounded exterior polygonal region by
T0. We view the partition interfaces together with ∂C as a connected planar graph with V vertices, E edges
(sides), and n+ 1 regions (including the exterior region). Euler’s characteristic then states that

V − E + n = 1.

Let d`, for ` = 1, . . . , V be the degree of each vertex. Note that, except at the vertices of C, d` is at least 3,
giving

V∑
`=1

d` ≥ 3(V − 6) + 2 · 6 = 3V − 6.

Since each edge connects exactly 2 vertices,
∑
` d` = 2E (a.k.a. the Handshake lemma) and we have

2E ≥ 3V − 6 = 3(E − n+ 1)− 6 =⇒ E ≤ 3n+ 3.

Polygon Ti has Pi sides for i = 0, . . . n. Since each side is incident to exactly two regions, 2E =
∑n
i=0 Pi.

Since the exterior polygon has at least 6 sides,

N =

n∑
i=1

Pi ≤
n∑
i=0

Pi − 6 = 2E − 6 ≤ 2(3n+ 3)− 6 = 6n

as desired. �

Proof of Theorem B.1. Without loss of generality, we can take that the points p1, . . .pn to lie in C, since
the left hand side of (15) increases under projection onto C. We consider the Voronoi partition ∪ni=1Ti of C
by the centers {pi}ni=1, i.e., the partition of C into convex polygons T1, . . . Tn such that for all x ∈ Ti,

‖x− pi‖ ≤ ‖x− pj‖, ∀j 6= i.

See Figure 6(left). We decompose the integral on the left hand side of (15):∫
C

f (d(p)) dp =

n∑
i=1

∫
Ti

f (‖p− pi‖) dp.

We label the Pi vertices of polygon Ti in cyclic order by e1, . . . , ePi . To each vertex pi, we take a circle
Ki with center pi of size such that (a translation to the origin of) Ki circumscribes the regular hexagon,

11



p

C

p1
e5

e4

pi

p3

p4

ei

Ri
1

Ri
2 Ri

3

e3

Ri
5

e2

p2

K
σ

K

HU

Figure 6. Illustrations for the proof of Theorem B.1. See [Fej72, Fig.80].

σ, with volume |σ| = |C|/n. Let Ri` ⊂ Ki \ Ti for ` = 1, . . . , Pi be a region associated to the `-th edge of
Voronoi cell i as illustrated in Figure 6(left). Of course, we allow for Ri` to be empty. Additionally we define
T ′i = Ti \Ki, which could also be empty. We then decompose the integral∫

Ti

=

∫
Ki

+

∫
T ′
i

−
Pi∑
`=1

∫
Ri

`

where the integrands are all f (‖p− pi‖) dp. Hereinafter we will frequently suppress integrands to simplify
exposition. Note that the first integral is the same for all i = 1, . . . , n,∫

Ki

f (‖p− pi‖) dp =

∫
K

f (‖p‖) dp.

Next, we consider the rearrangement of each region Ri` into a circular segment S = S(si`) with volume
si` = |S| = |Ri`|. Using Lemma B.3, we have∫

Ri
`

f (‖p− pi‖) dp ≥ ω
(
|Ri`|

)
,

giving ∫
Ti

≤
∫
K

+

∫
T ′
i

−
Pi∑
`=1

ω
(
|Ri`|

)
.

Now summing over i = 1, . . . , n, we have that∫
C

f (d(p)) dp =

n∑
i=1

∫
Ti

≤ n

∫
K

+

n∑
i=1

∫
T ′
i

−
n∑
i=1

Pi∑
`=1

ω
(
|Ri`|

)
.

Let N =
∑n
i=1 Pi. Using the convexity of ω (Lemma B.2) and Jensen’s inequality, we have∫

C

f (d(p)) dp ≤ n

∫
K

+

n∑
i=1

∫
T ′
i

− N · ω

(
1

N

n∑
i=1

Pi∑
`=1

|Ri`|

)
.

Letting T ′ = ∪ni=1T
′
i , we have that

|C| = n · |K| + |T ′| −
n∑
i=1

Pi∑
`=1

|Ri`| =⇒ 1

N

n∑
i=1

Pi∑
`=1

|Ri`| =
n · |K| + |T ′| − |C|

N
.

Since ω(0) = 0 and ω is an increasing, convex function it follows that ω(x)
x is a continuous and increasing

function. Using Lemma B.4, we have that N ≤ 6n which implies

(16)

∫
C

f (d(p)) dp ≤ n

∫
K

+

n∑
i=1

∫
T ′
i

− 6n · ω
(
n · |K|+ |T ′| − |C|

6n

)
.
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Let H be one of the circular segments in K \ σ. Recalling |C| = |σ|n, we have

H = S(|H|) = S

(
|K| − |σ|

6

)
= S

(
n · |K| − |C|

6n

)
.

We define U to be the set difference of two circular segments of K,

U = S

(
n · |K|+ |T ′| − |C|

6n

)
\H,

with volume |U | = |T ′|/6n; see Figure 6(right). We have

ω

(
n · |K|+ |T ′| − |C|

6n

)
= ω (|H|) +

∫
U

f (‖p‖) dp.

From (16), we have that∫
C

f (d(p)) dp ≤ n

[∫
K

f (‖p‖) dp− 6 · ω (|H|)
]

(17)

+

n∑
i=1

∫
T ′
i

f (‖p− pi‖) dp − 6n ·
∫
U

f (‖p‖) dp

Noting that U ⊂ K, we have f(r) = min{f (‖p‖) : p ∈ U} where r is the radius of K and similarly
f(r) = max{f (‖p− pi‖) : p ∈ T ′i}. Thus, in the second line in the right hand side of (17), we have

n∑
i=1

∫
T ′
i

f (‖p− pi‖) dp− 6n ·
∫
U

f (‖p− pi‖) dp ≤ f(r) · (|T ′| − 6n|U |) = 0.

The first line in the right hand side of (17) is exactly n ·
∫
σ
f (‖p‖) dp, which proves (15). �

Remark B.5. [Gru99] states the Moment Theorem for convex polygons with n = 3, 4, 5, or 6 vertices. This
generalized statement follows from Proposition B.1 by introducing false vertices for n = 3, 4, or 5.

Theorem B.6 (The Moment Lemma, [Fej63]). Assume f : [0,∞) → R is a non-increasing function. Let
C ⊂ R2 be a convex n-gon and σ the regular n-gon centered at the origin with |C| = |σ|. Then

(18)

∫
C

f (‖p‖) dp ≤
∫
σ

f (‖p‖) dp.

The moment Lemma for hexagons follows from the Moment Theorem when n = 1. We also mention
that Peter M. Gruber’s proof of the Moment Theorem relies on the Moment Lemma [Gru99; Gru07]. The
following proof, which closely follows [Fej63], is very similar to the proof of the Moment Theorem.

Proof of Theorem B.6. We may assume that C contains the origin. Otherwise, by translating C towards
the origin the integral on the left side of (18) would increase. Let K denote the circle that circumscribes σ.
Define R` ⊂ K, ` = 1, . . . , n to be the regions as in Figure 7 so that ∪`R` = K \ C. We allow some of the
R` to be empty. Define C ′ = C \K. We can then write∫

C

=

∫
K

−
∑
`

∫
R`

+

∫
C′

where the integrands here and below are understood to be f (‖p‖) dp. Using Lemma B.3, we have that∫
R`
≥ ω(|R`|). Using the convexity of ω (Lemma B.2) and Jensen’s inequality, we then have that∫

C

≤
∫
K

−
∑
i

ω(|R`|) +

∫
C′
≤
∫
K

−nω

(
1

n

∑
i

|R`|

)
+

∫
C′

Let H be one of the circular segments in K \ σ. Using the equality of the volumes

|C| = |K| −
∑
`

|R`|+ |C ′| and |σ| = |K| − n|H|

13



K

C

R1

R2

R3

R5

C ′

Figure 7. Illustration for the proof of Theorem B.6.

we obtain
1

n

∑
`

|R`| =
1

n
|C ′|+ |H|.

As in Figure 6(right), let U be the set difference between the two circular segments of K,

U = S

(
1

n
|C ′|+ |H|

)
\H,

we have that

ω

(
1

n

∑
`

|R`|

)
= ω(|H|) +

∫
U

.

Using the fact that all points in U are closer to the origin then points in C ′ and the monotonicity of f , we
have that n

∫
U
≥
∫
C′ . Finally, observing that

∫
σ

=
∫
K
−n · ω(|H|), we conclude that∫

C

≤
∫
K

−n ·
(
ω (|H|) +

∫
U

)
+

∫
C′
≤
∫
σ

,

as desired. �
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[Fej73] G. Fejes Tóth. “Sum of moments of convex polygons”. In: Acta Mathematica Hungaricae 24.3
(1973), pp. 417–421.
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tiones Mathematicae 58.3 (1999), pp. 291–295.

[Gru07] P. M. Gruber. Convex and Discrete Geometry. Springer, 2007.
[Hen06] A. Henrot. Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, 2006.
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