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A Maxwell Garnett approximation (MGA) and a symmetric effective medium approximation

(SEMA) are derived for anisotropic composites of host-inclusion and symmetric-grains

morphologies, respectively, with ellipsoidal grains of arbitrary intrinsic, shape and orientation

anisotropies. The effect of anisotropy on the effective dielectric tensor is illustrated in both cases.

The MGA shows negative and non-monotonic off-diagonal elements for geometries where the

host and inclusions are not mutually aligned. The SEMA leads to an anisotropy-dependent

nonlinear behaviour of the conductivity as a function of volume fraction above a percolation

threshold of conductor-insulator composites, in contrast to the well-known linear behaviour of the

isotropic effective medium model. The percolation threshold obtained for composites of aligned

ellipsoids is isotropic and independent of the ellipsoids aspect ratio. Thus, the common

identification of the percolation threshold with the depolarization factors of the grains is

unjustified and a description of anisotropic percolation requires explicit anisotropic geometric

characteristics. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826616]

I. INTRODUCTION

The Maxwell Garnett approximation1 (MGA), also

known as the Clausius-Mossotti approximation, and the

Bruggeman symmetric effective medium approximation2

(SEMA) are the most widely used methods for calculating

the bulk dielectric properties of inhomogeneous materials.3–8

The MGA is useful when one of the components can be con-

sidered as a host in which inclusions of the other components

are embedded, whereas the SEMA is more appropriate to

microgeometries where the grains of the various components

are symmetrically distributed, with no clear matrix compo-

nent. These approximations are based on an exact calculation

of the field inside a single spherical or ellipsoidal inclusion

embedded in a uniform host (the host component in the

MGA, or the effective medium in the SEMA), and an ap-

proximate treatment of the dipole field induced in the host

by the different inclusions, which results in a uniform field

inside all the inclusions. The MGA estimates the macro-

scopic response of the composite by summing the average

effect of this dipole field. In the SEMA, the effective me-

dium properties are determined self-consistently by demand-

ing that the average effect of the dipole field vanishes.3,4

Both approximations have been extensively used for study-

ing the properties of isotropic two-component mixtures, in

which the components are isotropic materials with scalar

dielectric coefficients and the components grains are

assumed to be spherical. Simple generalizations have been

formulated for isotropic mixtures including randomly ori-

ented ellipsoidal grains, with dielectric coefficients that are

either scalar or tensors with principal axes aligned with those

of the ellipsoids.5,9–11 Numerical studies of randomly ori-

ented arbitrarily shaped inclusions in mixtures of isotropic

components have also been analysed based on these general-

izations.12 Polycrystalline aggregates of a single anisotropic

component, where the inhomogeneity arises from the ran-

dom local dielectric tensor orientation throughout the sys-

tem, have also been treated by a similar extension of the

SEMA.13,14 These generalizations consider mixtures in

which the anisotropy is local and the grains are randomly ori-

ented, thus leading to an isotropic composite.

Applications of the MGA and SEMA to macroscopically

anisotropic composites are much less common. Most of

them consider suspensions of parallel ellipsoids in an iso-

tropic host and just apply three MGA expressions, one for

each of the principal axes of the inclusions, with the corre-

sponding depolarization factors, to calculate the three princi-

pal components of the effective dielectric tensor.5,11 Such

MGA expressions have also been applied to interpret results

of numerical calculations of the depolarization factors of

arbitrarily shaped inclusions.15 SEMA versions of this

approach abound in the literature15–20 and are extensively

used for comparison with experimental results, although they

are obviously inconsistent since they ignore the anisotropy

of the effective medium in parallel ellipsoid composites.

More general versions of the MGA treat suspensions of

spheres with anisotropic intrinsic dielectric tensors21 and

suspensions of ellipsoids of isotropic materials22,23 with vari-

ous orientation distributions in isotropic hosts. The macro-

scopic anisotropy in these cases is determined by the details

of the orientation distributions. Rigorous bounds on the

dielectric tensor of composites of arbitrarily oriented sphe-

roids in an isotropic host have also been formulated, in terms

of geometric n-point correlation functions.24,25

Studies of composites where the host component (in the

MGA) or the effective medium (in the SEMA) is anisotropic,

require a solution of the electrostatic problem of a spherical

or ellipsoidal inclusion in a uniform anisotropic medium.a)On leave from the Physics Department, NRCN, Israel.

0021-8979/2013/114(16)/164102/8/$30.00 VC 2013 AIP Publishing LLC114, 164102-1

JOURNAL OF APPLIED PHYSICS 114, 164102 (2013)

http://dx.doi.org/10.1063/1.4826616
http://dx.doi.org/10.1063/1.4826616
http://dx.doi.org/10.1063/1.4826616
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4826616&domain=pdf&date_stamp=2013-10-23


This solution is relatively recent and not widely known, thus

such treatments of anisotropic host composites are rare.

Stroud13 was the first to derive an implicit solution, based on

a Green’s function approach, for the effective conductivity

tensor of materials consisting of crystallites of arbitrary

shape and orientational symmetry. He applied this solution

to derive the above mentioned SEMA result for an isotropic

polycrystalline medium of anisotropic crystallites and a simi-

lar result for a polycrystalline metal in the presence of mag-

netic field. Diaz-Guilera and Tremblay26 applied this

formalism to uniaxial mixtures of parallel spheroids, with

principal axes that coincide with the axes of their conductiv-

ity tensor, and an isotropic conductor. They first noted that

when the composite itself is anisotropic, the SEMA leads to

a system of coupled equations (two equations in the uniaxial

case they considered) for the elements of the effective con-

ductivity tensor. Lakhtakia et al.27 used an alternative

Green’s function derivation to find the polarizability of a

sphere, with a uniaxial dielectric tensor, embedded in an

aligned uniaxial host, and applied it to obtain an MGA and

an EMA for uniaxial composite media of such spheres. The

EMA they obtained is essentially identical to that of Diaz-

Guilera and Tremblay.26 A different approach, based on a

coordinate transformation that converts the anisotropic host

into an isotropic one, was introduced by Sihvola.28 It was

used to explicitly solve the electrostatic problem of a sphere,

or ellipsoid, in an anisotropic host and formulate an MGA

for mixtures where such inclusions are aligned with the prin-

cipal axes of the host.5,28 The same transformation was used

by Milton to find the effective dielectric tensor of assemb-

lages of stretched confocal coated ellipsoids.14

In this paper, we use the coordinate transformation

method to obtain general MGA and SEMA expressions for

composites of anisotropic hosts and ellipsoidal inclusions

with arbitrary intrinsic and orientation anisotropy. Such a

general treatment of anisotropy is necessary for estimating

the properties of a wide variety of novel composite materials,

from columnar thin films20 to metamaterials with liquid crys-

talline components29 or components with indefinite perme-

ability tensors.30 We illustrate the effects of anisotropy on

the effective dielectric tensor in both approximations. The

rest of the paper is organized as follows: The solution of the

electrostatic problem of an ellipsoid in a uniform anisotropic

medium is revisited in Sec. II, and an explicit expression is

derived for its polarizability at arbitrary orientation and

intrinsic dielectric tensor. The MGA for suspensions of ani-

sotropic inclusions in an anisotropic host is introduced in

Sec. III, and a few specific examples are studied. In Sec. IV,

we introduce the SEMA for anisotropic composites of ellip-

soidal grains with general intrinsic and orientation anisot-

ropy and apply it to study the properties of anisotropic

percolating conductor-insulator mixtures. Finally, a brief

conclusion is included in Sec. V.

II. AN ELLIPSOIDAL INCLUSION IN AN ANISOTROPIC
HOST

Consider a parallel plate condenser whose plates are

large enough so that edge effects can be neglected. The

condenser is filled by a homogeneous anisotropic medium

with a tensor dielectric constant

~�h ¼
�x 0 0

0 �y 0

0 0 �z

0
@

1
A: (1)

A single ellipsoidal inclusion, arbitrarily oriented relative to

the principal axes of ~�h, is embedded in this host. Its surface

is described by the general expression

XTRTðh;/ÞA�1Rðh;/ÞX ¼ 1; (2)

where X¼ (x, y, z), R is a rotation matrix defined by the

angles h and / and

A ¼
a2 0 0

0 b2 0

0 0 c2

0
@

1
A

is the principal axes matrix of the ellipsoid. A voltage is

applied between the condenser plates such that the volume

averaged field in the system is E0. The electrostatics of the

problem is defined by the static Maxwell equation

r � D ¼ r �
�
~�ðrÞEðrÞ

�
¼ 0, which leads to

r �
�
~�hEðrÞ

�
¼ 0 in the host

r �
�
~�inEðrÞ

�
¼ 0 in the inclusion;

(3)

where ~�in is the inclusion dielectric tensor. The solution of

these equations for an isotropic host, where ~�h is a scalar and
~�in is an arbitrary dielectric tensor, is well-known.31 The

anisotropic host equations (3) can be transformed into equiv-

alent equations with an isotropic host using the coordinate

transformation5,28

ðx; y; zÞ !
ffiffiffiffi
�z

�x

r
x;

ffiffiffiffi
�z

�y

r
y; z

 !
¼ ðxt; yt; ztÞ: (4)

This leads to

rt �
�
�zEtðrtÞ

�
¼ 0 in the host

rt �
�
~�in;tEtðrtÞ

�
¼ 0 in the inclusion;

(5)

where rt ¼
ffiffiffiffi
~�h

�z

q
r is the gradient in the ðxt; yt; ztÞ coordinate

system and

Et ¼

ffiffiffiffiffi
~�h

�z

s
E and ~�in;t ¼ �z~�

�1
2

h ~�in~�
�1

2

h (6)

are the electric field and the inclusion dielectric tensor in this

system. The shape of the ellipsoid (2) is also transformed

into

XT
t RTðht;/tÞA�1

t Rðht;/tÞXt ¼ 1; (7)

where Xt ¼ ðxt; yt; ztÞ, the rotation angles ht and /t are gen-

erally different from h and / and
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At ¼
a2

t 0 0

0 b2
t 0

0 0 c2
t

0
@

1
A

is the principal axes matrix of the transformed ellipsoid. In

the simple case of parallel ellipsoidal inclusions aligned with

the principal axes of ~�h; h ¼ / ¼ 0, the transformed ellip-

soid is also aligned in the same direction and its principal

axes are at ¼
ffiffiffi
�z

�x

q
a; bt ¼

ffiffiffi
�z

�y

q
b and ct¼ c. In general, the ori-

entation of the transformed ellipsoid differs from the initial

orientation and its principal axes have to be extracted

directly from Eq. (7).

Following the coordinate transformation (4), we have in

Eq. (5) an ellipsoid embedded in a homogeneous isotropic

host with a dielectric constant �z. In this case, the electric

field Ein,t and the displacement field Din;t ¼ ~�in;tEin;t inside

the inclusion are uniform and satisfy the exact relation31

�zEin;t þ ~dtðDin;t � �zEin;tÞ ¼ �zE0;t; (8)

where ~dt is the depolarization tensor of the transformed ellip-

soid. The elements of ~dt in the directions of the ellipsoid

principal axes are given by

df ¼
1

2
atbtct

ð1
0

ds

ðsþ f2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2

t Þðsþ b2
t Þðsþ c2

t Þ
p ;

for f¼ at, bt and ct. Substituting in Eq. (8), the transformed

fields and inclusion dielectric tensor from Eq. (6), we find

Ein ¼ ~�h þ ~�
1
2

h
~dt~�
�1

2

h ~�in � ~�
1
2

h
~dt~�

1
2

h

h i�1

~�hE0 ¼ ~jE0: (9)

This relation between the uniform field Ein inside the ellip-

soid and the applied field E0 depends on ~dt, the depolariza-

tion tensor of the transformed ellipsoid (7). The dipole

moment of the inclusion is

pin ¼ Vin
Din � ~�hEin

4p
¼ Vin

4p
~aE0; (10)

where Vin is the volume of the ellipsoid and

~a ¼ ð~�in � ~�hÞ~j (11)

is its polarizability tensor. In cases where the inclusion is a

sphere, or an ellipsoid aligned with the principal axes of

~�h; ~dt and ~�h commute and Eq. (11) is reduced into

~a ¼ ð~�in � ~�hÞ½~�h þ ~dtð~�in � ~�hÞ��1~�h: (12)

The solution for this specific case was previously obtained by

Sihvola (Equation (5.92) in Ref. 5). If ~�h is reduced to a scalar

then ~dt is replaced by the ordinary depolarization tensor of the

inclusion, without the transformation (4). This leads to the

well known result for an inclusion in an isotropic host.31

III. THE LOCAL FIELD AND THE MAXWELL GARNETT
APPROXIMATION

Consider a medium containing a few ellipsoidal inclu-

sions, randomly distributed in an anisotropic host,

sufficiently far apart for their mutual interactions to be negli-

gible. The volume averaged polarization in the medium is

hPi ¼ 1

V

X
fing

pin ¼
f

4p
h~aiRE0; (13)

where f is the volume fraction of the inclusions and hiR
denotes an average over the orientations of the ellipsoidal

inclusions and the dielectric tensors inside them. The bulk

effective dielectric tensor can be defined by the ratio

between the volume averaged displacement field D0 ¼ hDi
and the volume averaged electric field E0

D0 ¼ ~�hE0 þ 4phPi ¼ ð~�h þ f h~aiRÞE0 ¼ ~�eE0: (14)

The bulk effective dielectric tensor is therefore

~�e ¼ ~�h þ f h~aiR: (15)

This result, ignoring the interaction between the different

inclusions, is usually called the dilute limit.

The electrostatic interaction between the inclusions is

negligible only in mixtures where their volume fraction is

very small. In all other cases, this interaction should be taken

into account when calculating the dielectric properties of the

system. This is most easily done in the MGA, where the av-

erage field acting on each inclusion is considered to be not

the applied field E0, but the well-known Lorentz local field.3

Using this correction, the dipolar interaction between the

inclusions is taken into account in an averaged way. A sim-

ple method to calculate this correction, usually referred to as

the excluded volume approach, was proposed by Bragg and

Pippard.3,32 The average field acting on an inclusion, in a

mixture that is not too dense, is the average field in the host

medium Eex. Substituting Eex for E0 in Eq. (9), we find that

the field inside an inclusion satisfies the relation Ein ¼ ~jEex.

The averaged field over the entire system, inside and outside

the inclusions, must still be E0. Therefore, the average fields

in the host and in the inclusions satisfy the simple relation

f hEini þ ð1� f ÞEex ¼ E0; (16)

where the angular brackets denote a volume average inside

the inclusions. Solving this relation for Eex we find

Eex ¼ ½ð1� f ÞI þ f h~jiR�
�1E0; (17)

where I is the 3� 3 identity matrix. This result can again be

used with Eq. (14) and hPi ¼ f
4p h~aiREex to calculate the vol-

ume averaged polarization and the bulk effective dielectric

tensor

~�e ¼ ~�h þ f h~aiR½ð1� f ÞI þ f h~jiR�
�1: (18)

This is the MGA result for mixtures of anisotropic inclusions

in an anisotropic host. It is valid for any orientation distribu-

tion of the ellipsoids and the dielectric tensor inside them rel-

ative to the dielectric tensor of the host. If the dielectric

tensor of the inclusions and their geometric principal axes

are aligned with the principal dielectric axes of the host, then

~�in; ~dt and ~�h all commute and this result reduces to

164102-3 O. Levy and E. Cherkaev J. Appl. Phys. 114, 164102 (2013)



~�e ¼ ~�h þ f~�hð~�in � ~�hÞ½~�h þ ð1� f Þ~dtð~�in � ~�hÞ��1: (19)

Sihvola obtained this result for this case (Equation (5.95) in

Ref. 5), using a different treatment of the average field in the

host. If ~�h is a scalar, Eq. (18) reduces to the MGA for aniso-

tropic inclusions in an isotropic host.21,22

Applying the MGA of Eq. (18), care must be taken that
~dt is the depolarization tensor of the transformed inclusion

(7), not of the real one (2). Consider a composite with paral-

lel prolate spheroidal inclusions, with principal axes (1,1,2)

aligned at 45� to the z-axis on the xz-plane (i.e., rotated by

45� around the y-axis, see medium-size smooth spheroid in

Fig. 1(a)). The shape and orientation of the transformed

ellipsoid (7) depend on ~�h. Fig. 1(a) shows two such ellip-

soids, one for �x¼ 15, �y¼ 14, and �z¼ 1 (the smaller netted

ellipsoid) and another for �x¼ 1, �y¼ 14, and �z¼ 15 (the

larger dotted ellipsoid). It is clear that both transformed ellip-

soids are very different from the original in shape and orien-

tation, in particular, they are not spheroids but general

ellipsoids. The depolarization tensors of these ellipsoids are

used in evaluating the MGA effective dielectric tensor (18).

The orientation and shape of the transformed ellipsoids

change with the orientation of the spheroidal inclusion. This

is demonstrated in Fig. 1(b), where the same spheroid is

shown, but now aligned at 20� to the z-axis, with its trans-

formed ellipsoids in the same two hosts. Therefore, in mix-

tures of identical ellipsoids that are not parallel, the

transformed ellipsoids vary in shape, and the averaging in

Eq. (18) should be performed both over the orientation distri-

bution of the inclusions and the corresponding distribution of

depolarization tensors ~dt.

Results of the MGA for the composites of Fig. 1(a)

(spheroids aligned at 45� in each of the two hosts discussed

above) are shown in Fig. 2. The component inside the inclu-

sions is itself anisotropic, and the alignment of its dielectric

tensor affects the effective dielectric tensor of the mixture.

In the examples of Fig. 2 the dielectric tensor of the inclusion

component is

~�in ¼
6 0 0

0 3 0

0 0 7

0
@

1
A: (20)

For each of the anisotropic hosts of Fig. 1, we consider two

different orientations of ~�in inside the inclusions. In the first

case, ~�in is aligned with ~�h and its representation in the (x, y, z)
coordinate system is given by Eq. (20). In the other case, it

is aligned with the shape of the ellipsoidal inclusions

(rotated by 45�) and its representation in the (x, y, z) coordi-

nate system is

~�in ¼
6:5 0 0:5
0 3 0

0:5 0 6:5

0
@

1
A: (21)

In both cases, the diagonal elements of ~�e vary monotoni-

cally, as a function of the inclusions volume fraction,

between the corresponding elements of the host and the

inclusion component. The off-diagonal elements are not

monotonic, and are negative in different ranges of f, due to

the mis-orientations of ~�h; ~�in and ~dt. This behaviour is more

pronounced when ~�h and ~�in are aligned (Figs. 2(c) and 2(d)),

where the range of negative off-diagonal terms extends over

all concentrations, except f¼ 0 and 1.

IV. A SYMMETRIC EFFECTIVE MEDIUM
APPROXIMATION

The SEMA models composites in which the grains of

the various components are randomly and symmetrically dis-

tributed, so that none of the components is identifiable as a

host in which the others are preferentially embedded.2,3 It

becomes exact in a hierarchical geometry where spherical

grains of two components play symmetrical geometric

roles.14,33 In this approximation, all the material outside a

given ellipsoidal grain produces a homogeneous medium.

The effective properties of this medium are calculated by

imposing the self-consistency condition that the average

polarization induced in the medium by all the grains van-

ishes. Applying this condition to a composite with grain

polarizabilities given by Eq. (11), we find

ð~�in � ~�eÞ ~�e þ ~�
1
2
e
~dt~�
�1

2
e ~�in � ~�

1
2
e
~dt~�

1
2
e

h i�1� �
¼ 0: (22)

It should be noted that since, in this approximation, the ani-

sotropic host is the effective medium itself, the depolariza-

tion tensors ~dt in Eq. (22) depend implicitly on elements of

the effective dielectric tensor that determine the shape and

orientation of the transformed ellipsoidal grains, via Eqs. (4)

and (7). Thus, in the general case, where the dielectric ten-

sors of the components and their grains are not mutually

aligned, the self-consistency condition (22) leads to a system

of six coupled equations for the different elements of ~�e. It

should also be noted that, in this general case, the orientation

of ~�e is not known a priory but varies as a function of the

volume fractions of the components. Therefore, the transfor-

mation (4) would be performed at a different orientation,

which has to be deduced self-consistently, at each

FIG. 1. A prolate spheroid oriented at 45� (a) or at 20� (b) to the z-axis (me-

dium smooth green surface) and its corresponding transformed ellipsoids,

for �x¼ 15, �y¼ 14, and �z¼ 1 (small netted red ellipsoids) and for �x¼ 1,

�y¼ 14, and �z¼ 15 (larger dotted blue ellipsoids).
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composition. If the dielectric tensors of the components and

their grains are all aligned, i.e., the dielectric tensors and the

characteristic matrices of the ellipsoids are all diagonal in

the same coordinate system, then the transformed ellipsoids

and the effective dielectric tensor are also aligned and we get

f ð~�1 � ~�eÞ½~�e þ ~dt;1ð~�1 � ~�eÞ��1

þð1� f Þð~�2 � ~�eÞ½~�e þ ~dt;2ð~�2 � ~�eÞ��1 ¼ 0: (23)

Here, we only have to solve three coupled equations for the

three diagonal elements of ~�e. An example of the SEMA of

Eq. (23) for a composite with components

~�1 ¼
1 0 0

0 14 0

0 0 15

0
@

1
A and ~�2 ¼

6 0 0

0 3 0

0 0 7

0
@

1
A (24)

is shown in Fig. 3, for three cases of spherical, prolate and

oblate spheroids. While the elements of ~�e are, as expected,

the same at f¼ 0, 1 in all cases, their variation with f depends

on the shape of the grains. Also shown for comparison are

the elements of ~�e for spherical grains that were not calcu-

lated self-consistently with anisotropy dependent ~dt but

assumed to have constant depolarization factors of 1/3. The

differences in this example are apparent but not large. They

increase with increasing anisotropy, as the differences

between the grains real and transformed shapes become

more pronounced.

A. Percolation in conductor-insulator composites

One of the appealing features of the SEMA is that it is

the simplest approximation that shows a non-trivial

FIG. 3. The SEMA effective dielectric tensor elements of two component

composites with aligned component dielectric tensors �x¼ 1, �y¼ 14,

�z¼ 15, and �x¼ 6, �y¼ 3, �z¼ 7, and spherical grains (solid lines), prolate

spheroids with c/a¼ 5 (dashed lines) and oblate spheroids with a/c¼ 5

(dashed-dotted lines). The dots denote the results for spheres with a constant

depolarization factor 1/3.

FIG. 2. The MGA effective dielectric tensor elements for the composites of Fig. 1(a), as a function of the inclusions volume fraction f. In (a) and (b) the dielec-

tric tensor of the inclusions ~� in is aligned with their geometric principal axes. In (c) and (d) it is aligned with the dielectric tensor of the host. In (a) and (c) the

host has �x¼ 1, �y¼ 14, and �z¼ 15. In (b) and (d) it is �x¼ 15, �y¼ 14, and �z¼ 1. In each plot the upper three curves are the diagonal elements of ~�e : ~�e;x

(dashed, blue), ~�e;y (dashed-dotted, green) and ~�e;z (solid, red). The lower curve is ~�e;xz (solid, red), the other off-diagonal elements are identically zero.

164102-5 O. Levy and E. Cherkaev J. Appl. Phys. 114, 164102 (2013)



percolation threshold for the effective conductivity of

conductor-insulator composites, where r1=r2 ¼ 0. For iso-

tropic composites with spherical grains, the percolation

threshold is fc¼ 1/3, the depolarization factor of a sphere,

and the dependence of the effective conductivity on compo-

sition above percolation is linear,3,4,11 re / ðf � fcÞ. In iso-

tropic mixtures of randomly oriented ellipsoids, fc is their

smallest depolarization factor, which decreases as the aspect

ratio of the ellipsoids increases.3,9 To look at the percolation

characteristics of the SEMA for anisotropic composites, we

rewrite Eq. (23) for conductivities, with two components

~r1 ¼ 0 and ~r2 ¼
rx 0 0

0 ry 0

0 0 rz

0
@

1
A: (25)

Assuming that the grains of both components are spheres or

parallel ellipsoids with the same aspect ratio, and that the

conductivity tensor ~r2 in all component 2 grains is aligned

with their principal axes, this gives a set of three coupled

equations for the elements of ~re

~re;i ¼ ri
f � dt;i

1� dt;i
; (26)

where i¼ x, y, z. If rx¼ry and the grains are spheroids then

~re is uniaxial and the transformed grains are also spheroids

with depolarization factors31

dt;z ¼

1þ e2

e3
ðe� arctan eÞ for oblate spheroids

1� e2

2e3
log

1þ e

1� e
� 2e

� �
for prolate spheroids;

8>>><
>>>:

(27)

where their eccentricity is

e ¼

re;z

re;x

a

c

� �2

� 1

 !1
2

for oblate spheroids

1� re;z

re;x

a

c

� �2
 !1

2

for prolate spheroids;

8>>>>>>><
>>>>>>>:

and dt;x ¼ ð1� dt;zÞ=2.

Examples of the effective conductivities of Eq. (26) for a

uniaxial composite (rx ¼ ry ¼ 1; rz > 1) of spherical and

spheroidal grains of different aspect ratios are shown in

Figures 4 and 5. Two features are immediately apparent: (1)

The percolation threshold is fc¼ 1/3 for both re,z and re,x, inde-

pendent of the aspect ratio of the grains. (2) The behaviour of

re,z and re,x above the percolation threshold is nonlinear and

depends on the aspect ratio of the grains. In some cases they

even cross each other at some f> fc. At these crossing points,

the different microscopic anisotropies of the grain shapes and

the components conductivity tensor exactly cancel such that

the composite is macroscopically isotropic. In Figures 4 and 5,

rz> 1 and the crossing points appear for oblate spheroids. For

rz< 1 they would appear for prolate spheroids.

Similar examples for biaxial conductor-insulator compo-

sites (rx¼ 1, ry¼ 2 and rz¼ 5) with two different types of

ellipsoidal inclusions are shown in Fig. 6. The percolation

threshold for the three effective conductivity tensor elements

is again fc¼ 1/3, for both types of grains. The behaviour

above the percolation threshold is nonlinear and depends on

the shape of the grains. In the case where the large axis of

the grains is also the axis of smaller conductivity (circle

marked lines in Fig. 6) the elements of re cross each other,

leading to three values of f where the composite is macro-

scopically uniaxial.

The independence of fc of the shape of the grains is very

peculiar and stands in contrast to our intuition regarding the

anisotropy of the percolation in composites with parallel

elongated grains. It seems clear that in this case the percola-

tion threshold in the direction of the long grain dimension

should be lower than in the perpendicular direction. This

intuition is obviously correct, but is not reproduced by the

electrostatics of spheroids in anisotropic hosts. As f
approaches fc¼ 1/3, the coupling of Eq. (26) causes a con-

vergence to 1 of the effective aspect ratios of the transformed

inclusions (as shown in the insets of Figures 4 and 6). The

transformed grains become more spherical, leading to an

FIG. 4. The SEMA conductivity tensor elements re,z (upper, green curves)

and re,x (lower, blue curves) of a conductor-insulator composite with

rx¼ry¼ 1 and rz¼ 2 for spherical grains (solid lines), prolate spheroids

with c/a¼ 5 (dashed lines) and oblate spheroids with a/c¼ 5 (dashed-dotted

lines). The insets show the convergence of the aspect ratio of the trans-

formed grains, R ¼ re;z

re;x

a
c

� �2
, to 1 at fc¼ 1/3.

FIG. 5. The SEMA re,z of a conductor-insulator composite with rx¼ry¼ 1

and rz¼ 5 for spherical grains (solid line), prolate spheroids with c/a¼ 2

(dash), c/a¼ 5 (diamonds), c/a¼ 10 (circles) and c/a¼ 30 (dashed-dotted)

and oblate spheroids with c/a¼ 0.5 (squares) and c/a¼ 0.1 (dots). The inset

shows re,x for the same cases. re,x for c/a¼ 0.1 (dots) is also shown in the

main figure.
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isotropic percolation threshold as in the isotropic SEMA for

spherical grains.3,4 This effect is sharper at larger aspect

ratios, as it becomes more difficult for the electrostatics to

compensate for the anisotropic shape of the grains by

increasing the re,z/re,x and the re,z/re,y ratios. At infinite as-

pect ratios the compensation is no longer possible and the

SEMA reduces to the limit of parallel cylinders, where

re,z¼ frz. This is demonstrated in Fig. 5, where the re,z curve

above fc becomes more concave for larger prolate aspect

ratios, as it approaches the linear frz limit.

V. CONCLUSION

In this paper, we present a Maxwell Garnett approxima-

tion (MGA) and a symmetric effective medium approxima-

tion (SEMA) for anisotropic composites with ellipsoidal

grains of arbitrary intrinsic, shape and orientation anisotropy.

The derivation is based on a transformation of the electro-

static problem of an anisotropic host into an equivalent prob-

lem of an isotropic host with differently shaped and oriented

inclusions. Averaging the polarization of these transformed

inclusions produces the approximations for the effective

properties of the composite. The importance of the trans-

formed inclusions, although already noted in previous

works,5,27,28 has not been widely recognized. Thus, inconsis-

tent formulas that ignore the anisotropy of the effective me-

dium, by considering the polarization of the geometric

inclusions instead of the transformed ones, are still com-

monly used.18–20 These inconsistent formulas may lead to

errors in the interpretation of experimental data on highly

anisotropic inhomogeneous media. They should thus be

replaced by the MGA or SEMA presented in this paper,

when applied to a wide variety of novel anisotropic compo-

sites and metamaterials.20,29,30

We demonstrated the effect of anisotropy on the effec-

tive dielectric tensor in both approximations. In the MGA, it

leads in some cases to negative and non-monotonic off-diag-

onal elements of the effective dielectric tensor, due to the

misalignment of the host and the inclusions. In the SEMA,

the anisotropy leads to a nonlinear variation of the effective

conductivity at concentrations above the percolation thresh-

old of anisotropic conductor-insulator composites, in con-

trast to the well-known linearity of the isotropic effective

medium model. This nonlinear behaviour is anisotropy-

dependent, thus conductor-insulator mixtures with different

anisotropies would exhibit various nonlinearities above the

percolation transition. In addition, the percolation threshold

obtained for composites of aligned ellipsoids is isotropic and

independent of their aspect ratio. For isotropic composites

with spherical grains the percolation threshold in the well-

known isotropic SEMA is fc¼ 1/3. In mixtures of randomly

oriented ellipsoids, this value decreases with increasing as-

pect ratio of the ellipsoids and is characterized by the small-

est depolarization factor of the ellipsoids.3,9,34 Similarly, in

composites of aligned ellipsoids, the percolation threshold is

obtained in the direction most favorable for contact and has

been related to the corresponding depolarization factor.7 The

values of the percolation threshold obtained in numerical

studies of various percolating systems are very sensitive to

details of the microgeometry and are usually different from

the depolarization factors of the inclusions, but the qualita-

tive trend of decreasing threshold with increasing aspect ra-

tio of the grains is preserved (see e.g., Refs. 7, 35, and

references therein). The isotropy of the percolation in the

anisotropic SEMA, we presented here, demonstrates that the

common identification of the percolation threshold with the

depolarization factors of the grains, although qualitatively

appealing, is unjustified. It should serve to emphasize the

distinction between percolation, which is a geometric phe-

nomenon, and the polarization defined by the depolarization

factors, which is an electrostatic property. Therefore, a

description of anisotropic percolation is not achieved within

a self-consistent effective medium approximation but should

include explicit anisotropic microgeometric characteristics.
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