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S U M M A R Y
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion
of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit
incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP),
single-chassis workstations with large RAM are used throughout, including the forward solu-
tion, parameter Jacobians and model parameter update. In Part I, the forward simulator and
Jacobian calculations are presented. We use first-order edge elements to represent the sec-
ondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very
low frequencies or small material admittivities, the E-field requires divergence correction.
With the help of Hodge decomposition, the correction may be applied in one step after the
forward solution is calculated. This allows accurate E-field solutions in dielectric air. The sys-
tem matrix factorization and source vector solutions are computed using the MKL PARDISO
library, which shows good scalability through 24 processor cores. The factorized matrix is
used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field
and MT responses using the reciprocity theorem. Comparison with other codes demonstrates
accuracy of our forward calculations. We consider a popular conductive/resistive double brick
structure, several synthetic topographic models and the natural topography of Mount Erebus
in Antarctica. In particular, the ability of finite elements to represent smooth topographic
slopes permits accurate simulation of refraction of EM waves normal to the slopes at high
frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as
176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ∼1.5 hr
per frequency. Together with an efficient inversion parameter step described in Part II, MT
inversion problems of 200–300 stations are computable with total run times of several days on
such workstations.

Key words: Numerical approximations and analysis; Electrical properties; Magnetotelluric;
Geomagnetic induction; Physics of magma and magma bodies; Antarctica.

1 I N T RO D U C T I O N

Impressive progress has been made over the past several years in the
simulation and inversion of three-dimensional (3-D) diffusive elec-
tromagnetic (EM) responses for earth electrical resistivity structure.
Most approaches have adopted finite difference or finite element
(FE) numerical methods although the integral equations technique
also has been utilized (see reviews by Börner 2010; Everett 2012).
An effective simulation and inversion algorithm needs to handle
a large range of structural scales due to possibly complex resis-
tivity distributions and the wide frequency bandwidth of survey
techniques (e.g. potentially seven or more orders of magnitude in

magnetotellurics (MTs); Chave & Jones 2012). Furthermore, in
many orogenic or resource settings, the earth’s surface can show
considerable topographic variation which will have its own EM re-
sponse and introduces vertical variation of receiver placement with
respect to subsurface structure.

To include topography in earth resistivity models, we pursue the
FE method. FEs allow for a relatively smooth representation of
topography. Although it is possible to consider finite difference or
finite volume discretization on unstructured (i.e. non stair-stepped)
meshes (Hyman & Shashkov 1999; Liu et al. 2009; Jahandari &
Farquharson 2014), it may lead to spurious modes in the solution
(see a discussion in Hyman & Shashkov 1999), late time instability
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3-D MT FEM simulation with direct solvers 75

(see a discussion in Liu et al. 2009) or geometric restrictions on
the grid (Liu et al. 2009). Proper discretization of the operators ∇,
∇ × and ∇ · that are important in Maxwell’s equations (Hyman
& Shashkov 1999) is a challenge for unstructured meshes. Edge
elements, considered in this paper, respect the relationship between
those operators, expressed by an algebraic topology structure called
de Rham diagram (Gunzburger & Bochev 2009), which allows us
to apply the divergence correction in a natural way.

Several authors have considered the choice between tetrahedral
and hexahedral elements for including topography (e.g. daSilva
et al. 2012; Lelièvre & Farquharson 2013; Schwarzbach & Haber
2013), with tetrahedra argued by some to allow a more arbitrary
discretization of structure. However, we will show that much can be
accomplished using hexahedra, and their simpler implementation
in both the forward and inverse modules helps to keep computer re-
sources manageable and may facilitate wider transfer of technique
within the EM community. We solve for the electric field through
the governing Helmholtz equation, so edge FEs are used (lowest
order type) (Nédélec 1986). These conforming elements allow field
discontinuities normal to conductivity interfaces to be represented
but preserve continuity of the tangential field component. FEs do
not invoke material averaging procedures across cell boundaries as
is done in staggered grid finite difference schemes (daSilva et al.
2012) so there is no question about the placement of sharp interfaces.

The design factors cited above can put high demands upon mesh
discretization and computing resources for larger data sets. Be-
cause of such demands, especially memory, iterative solutions have
dominated the literature heretofore (Haber et al. 2007; Börner et al.
2008; Commer & Newman 2008; Um et al. 2012, and many others).
Since at least the work of Pridmore et al. (1981), however, iterative
forward solvers are known to become ill-conditioned and slow to
converge if grid cell aspect ratios grow to be extreme. Moreover,
iterative solutions for the Helmholtz equation require careful pre-
conditioning and even so may sometimes fail to converge (also see
Grayver et al. 2013). They become expensive when many right-hand
source vectors are needed, such as in controlled-source applications
or the inversion approach we describe, as each source requires the
work of a full simulation. Conditioning issues may apply as well to
iteratively solving normal equations in the inversion parameter step
(op. cit.).

Recent advances in computing power, especially emergence of
less expensive many-core, symmetric multiprocessor (SMP) work-
stations with substantial RAM, have motivated us to implement
direct solvers both for the forward model responses and for Gauss–
Newton inversion parameter steps. This is intended to produce a
practical 3-D inversion code incorporating topography that can han-
dle moderately large data sets on an affordable, single-box computer
format. We find that accurate solutions for meshes with large ele-
ment aspect ratios having run times nearly independent of frequency
are possible. The solution of hundreds of source vectors at the cost
of factoring the forward system matrix allows explicit calculation of
parameter Jacobians accurately and efficiently, as has been applied
for some time with the 2-D problem (e.g. deGroot-Hedlin & Consta-
ble 1990; deLugao & Wannamaker 1996; Key & Constable 2011).

We certainly are not the first to examine direct solutions for
3-D problems. Streich (2009) created a staggered-grid finite differ-
ence algorithm with a direct solver for simulating marine controlled
source electromagnetic (CSEM) responses. Oldenburg et al. (2008,
2013) used a direct solver in their finite difference H-field simu-
lator for time domain electromagnetic (TDEM) inversion and Um
et al. (2015) used a mixed direct-iterative solution to model well
casing effects with FEs. daSilva et al. (2012) utilized rectilinear

edge FEs in forward modelling of seafloor CSEM models while
Ren et al. (2013) considered a direct solver for tetrahedral meshes.
Grayver et al. (2013) incorporated Streich’s solver to compute for-
ward responses and parameter Jacobians explicitly and create an
inversion algorithm where the parameter step was estimated using a
pre-conditioned conjugate gradient (PCG) scheme. Schwarzbach &
Haber (2013) developed an unstructured mesh of tetrahedra with the
forward problem solved directly and the parameter step computed
via PCG or iterative quasi-Newton method. Usui (2015) solved MT
responses directly using a tetrahedral mesh and developed an inver-
sion code with direct solution of the parameter step in model space.

In Part I of our contribution, we apply a direct solver to edge FE
equations of a deformed hexahedral mesh and verify that accurate
responses are achieved for subsurface and topographic structure.
Good responses are obtained also in the dielectric air portion of the
model after applying a divergence correction. Parameter Jacobians
are computed accurately and efficiently in the direct framework ex-
ploiting reciprocity. Moderately large meshes can be computed in
what we believe are practical run times. In Part II, forward simula-
tions are used together with MT data to form normal equations for
a regularized inversion step. We investigate the data space (Siripun-
varaporn et al. 2005) formulations of the step and confirm that it
can handle significant parameter sets. We invert a well-known field
data set to demonstrate algorithm performance in real-world set-
tings. The HexMT algorithm, is parallelized for widely available,
server-class SMP workstations.

2 F I N I T E E L E M E N T F O R M U L AT I O N

For representing structure with topography, we use an FE mesh
such as in Fig. 1. Corners of elements at the air-earth interface
(surface) are adjusted vertically to represent elevation changes. This
is similar to the fashion of Nam et al. (2007). Sub- and superajacent
element layers are moved similarly but with steadily diminishing
magnitude away from the surface until upper and lower datum planes
are reached. Beyond those planes, the element layers remain flat.
The height and depth of these planes from the background air-earth
interface typically is several times the maximal topographic model
relief to allow the elements to be close to parallelepipeds in shape.
If there are elements that are not close to parallelepipeds, the order
of convergence versus discretization may be reduced (see Falk et al.
2011).

Formally, the spatial domain of Fig. 1 is a cuboid �, whose top
portion is air (σ = 0) and whose lower portion is earth’s subsur-
face (σ > 0) which may exhibit topography in its central portion.
We assume that the conductivity of the earth’s subsurface may be
an arbitrary 3-D isotropic function in the middle of the domain,
while towards the distant domain boundaries the conductivity be-
comes 1-D with flat topography, that is, changing only vertically.
In the frequency domain with eiωt time dependence, where ω is the
angular frequency, the physical property variables are admittivity
σ̂ = σ + iωε with electrical conductivity σ ≥ 0, dielectric permit-
tivity ε > 0, and magnetic permeability μ > 0.

Similar to numerous other authors (e.g. following Hohmann
1988), we define (Ep, Hp) as primary fields, which would be those
within and over the 1-D host, for use as an impressed source Jimp.
Thus we denote

J imp = −(σ̂ − σ̂ p)E p (1)

Secondary and primary fields are added to obtain total fields as:

Et = E + E p, H t = H + H p (2)
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76 M. Kordy et al.

Figure 1. 3-D view of an example hexahedral mesh with topography. Only the underground part of the mesh is shown. One sees increasingly high aspect ratio
of elements approaching the boundary ∂�. This view is from the southwest of mesh number 3 for Mount Erebus model analysed later.

One assumes that far from conductivity inhomogeneity, that is,
near ∂�,

Et ≈ E p, H t ≈ H p (3)

and thus the secondary electric field satisfies E ≈ 0 near the domain
boundary.

The secondary field E obeys the vector Helmholtz equation in
the open spatial domain � ⊂ R

3:

∇ ×
(

1

μ
∇ × E

)
+ iωσ̂ E = −iω(σ̂ − σ̂ p)E p (4)

(Hohmann 1988). As a basis for FE formulation, we will consider
a weak form of eq. (4) (cf. Monk 1992):∫

�

1

μ
∇ × E · ∇ × M + iω

∫
�

σ̂ E · M = iω
∫

�

J imp · M (5)

satisfied for all M ∈ H0(∇×, �). The solution E should be a mem-
ber of the same Sobolev spaceH0(∇×, �) which is formally defined
as

H0(∇×,�) =
{

M :� → C
3 :

∫
�

(|M |2 + |∇ × M |2) < ∞,

n × M |∂� = 0

}
(6)

It is a space of complex valued vector fields that are square inte-
grable with square integrable curl. Heuristically, one can think of
the members of this space as having continuous tangential compo-
nents across any surface going through �. H0(∇×, �) is a natural
space for the electric field E. The boundary condition n × E = 0 is
a natural consequence of eqs (2) and (3).

For numerical approximation, we choose first-order edge ele-
ments Hh

0 (∇×, �) on a hexahedral mesh (see Nédélec 1986). By
construction Hh

0 (∇×,�) ⊂ H0(∇×,�) and as the mesh element
size h → 0, Hh

0 (∇×, �) approaches H0(∇×,�). The tangential
components of the members of Hh

0 (∇×,�) are continuous across
elements while the normal component may experience a jump. De-
grees of freedom of the first-order edge elements are related to the
integral of the E-field along an edge. Through Stokes’ theorem, an
integration of E along the edges, around the face yields the flux of
∇ × E through the face. This shows that edge element discretization
is compatible with the curl operator.

The electric field over � is represented as a linear combination
of the edge shape functions Ni with coefficients ξ i:

E =
ne∑

i=1

ξi Ni (7)

where i = 1, . . . , ne are indices of the edges that do not lie on
the boundary. By excluding the edges lying on the boundary one
imposes the boundary condition of n × E = 0 on ∂�. It is equivalent
to setting the coefficients related to the edges lying on the boundary
to zero. By substituting eq. (7) into eq. (5) and using Nj as test
functions, one obtains a linear system (cf. Monk 1992)

Aξ = b (8)

Ai, j =
[∫

�

1

μ
∇ × Ni · ∇ × N j + iω

∫
�

σ̂ Ni · N j

]
(9)

bi = iω
∫

�

J imp · Ni . (10)

The secondary magnetic field is calculated as

H = −∇ × E

iωμ
. (11)

This justifies the choice of first-order edge elements which have the
same accuracy O(h) for both the field and the curl.

Note that 1-D host layer interfaces may project through individual
deformed elements and as a result Jimp is discontinuous within an
element. The integration of terms in eqs (9) and (10) is done using
a quadrature integration of the form

n∑
i=1

f (ui )vi , (12)

where ui are points in the reference element, which is a unit cube
in our case and vi are weights. If the integrand f is smooth in the
element, which is true for eq. (9) and for eq. (10) if the 1-D host
layer interface does not project through an element, positions ui and
weights vi are set according to Gaussian quadrature. Yet for eq. (10),
if a 1-D conductivity layer interface splits the element, the integrated
function is discontinuous and the integration is done by distributing
ui uniformly in the unit cube and setting all vi = 1

n . For accuracy of
integration, n should have larger values than in the case of a smooth
function. As will be seen, with sufficiently fine integration of the
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3-D MT FEM simulation with direct solvers 77

primary field over the element conductivity differences, we are able
to achieve accurate responses. For the numerical integration, we
use 10 points in each direction, which results in 1000 points in each
element. To limit the additional computational effort due to the
evaluation of the source term at so many points, such an integration
is done only if the layer boundary crosses the element.

In this paper we consider the MT source, namely that of a verti-
cally propagating, planar EM wave. The total field components at
specified surface locations and frequencies are interrelated through
the tensor impedance Z and tipper K as⎡
⎢⎣

Et
x

Et
y

H t
z

⎤
⎥⎦ =

⎡
⎢⎣

Zxx Zxy

Z yz Z yy

Kzx Kzy

⎤
⎥⎦

[
H t

x

H t
y

]
, (13)

where subscripts x, y, z denote components of a vector field. Eq.
(8) is solved twice for two polarizations (k = 1, 2) of the source
field Ep, typically in the x- and then the y-directions, to generate
two equations in two unknowns for each row of the tensor (13).
The equations expressing the impedance in terms of the electric and
magnetic fields are listed in, for example, Newman & Alumbaugh
(2000) and can be written analogously for the tipper.

A receiver can be positioned at an arbitrary location r with respect
to element edges via appropriate interpolation. In general, let r be
inside an element with edges e1, . . . , e12. Then field Ek at location
r is given by

Ek(r) =
12∑

l=1

Nel (r)ξel =

⎡
⎢⎢⎣

(wE
x )T ξ k

(wE
y )T ξ k

(wE
z )T ξ k

⎤
⎥⎥⎦ . (14)

Here wE
x , wE

y , wE
z contain interpolation vectors with at most 12

non-zero values corresponding to x, y and z components of edge
shape functions Ne1 (r), . . . , Ne12 (r).

Similarly, the secondary magnetic field H k(r) for polarization k,
calculated using eq. (11) at location r, is given by

H k(r) =
12∑

l=1

∇ × Nel (r)

−iωμ
ξel =

⎡
⎢⎣

(wH
x )T ξ k

(wH
y )T ξ k

(wH
z )T ξ k

⎤
⎥⎦ . (15)

This time the only non-zero values of wH
x , wH

y , wH
z are x, y and z

components of(∇ × Ne1 (r)

−iωμ
, . . . ,

∇ × Ne12 (r)

−iωμ

)
.

Total fields are obtained as in eq. (2).
The locations of the MT receivers are on the Earth’s surface,

which is always at an element’s face. The along-face (tangential)
components of the discretized electric field experience a jump at
the face edges, thus it is best to use the values of the field cal-
culated at the face centre. One could evaluate the field elsewhere
by interpolation of the fields from the neighbouring face centres,
yet for simplicity we assume that the receiver’s location r is at the
face centre. This requires MT receiver relocations in practice. In
our inversions (see our companion paper, Kordy et al. 2015b) we
consider the element size to be several times smaller than the dis-
tance between the receivers, thus the relocation is not very large and
does not appear to lead to a significant inversion error (see subse-
quent Mount Erebus simulation and the brick-under-hill synthetic
inversion of Kordy et al. 2015b).

Because the tangential electric field is continuous across the sur-
face, it is immaterial whether we approach the surface from within

an element below or above the air-earth interface. E-fields normal
to a surface are discontinuous and must be evaluated on the side
of interest, or interpolated using the values of the total electric cur-
rent at the element centres. If magnetic permeability μ is the same
above and below the surface, the magnetic field should be continu-
ous as well. However, because the H-field obtained through curl E
is piecewise constant from element face to face, we use an average
of the H-field from the elements on either side of a receiver. As a
result interpolation vectors w corresponding to the magnetic field
may have up to 20 non-zero entries. The interpolation vectors w

depend neither on the primary source fields nor on the conductivity
model σ .

To calculate the MT response apart from solving eq. (8) one
needs to evaluate the entries of matrix A as well as calculate the
source vectors b (eq. 10). In our implementation using OpenMP,
for a model with a mesh with 101, 101 and 50 cells in the x, y and
z directions, respectively (101x 101y 50z) and 256 MT receivers,
the calculation of the system matrix takes about 1.7 per cent of
the time of the forward modelling (response F and Jacobian J).
We have parallelized the calculation of the source vectors (10) also
using OpenMP. If 9-point quadrature is used for all elements, the
time of the calculation of the right hand side (rhs) vectors, for the
same model, is about 0.15 per cent of the total forward modelling
time. In practice, if the background conductivity layer crosses an
element, we use a quadrature with 1000 points, which increases the
computational time. Yet even if the quadrature with 1000 points
is used for all of the elements, the time of computation is around
0.8 per cent of the total forward modelling time.

3 D I V E RG E N C E C O R R E C T I O N

Smith (1996) recognized that matrices formed from the numerical
approximation of eq. (4) suffer from a particular ill-conditioning.
This is why researchers considered solving for vector and scalar
potentials (Haber et al. 2000; Mitsuhata & Uchida 2004; Roy 2007;
Kordy et al. 2015a). The second term on the left side of eq. (4) be-
comes very small at either low frequencies or small admittivities, so
the solution becomes vulnerable to parasitic curl-free fields. These
are manifest as erroneous divergences of current density within the
earth model that require corrective steps. For example, consider
linear system (8) whose true solution is ξ , approximated by eq. (7).
Let the gradient of a potential field be added to the solution such
that

Ê = E + ∇ϕ̃ =
ne∑

i=1

ξ̂ Ni (16)

and let the values of ∇ϕ̃ be of order 1. The residual r of eq. (7) is
defined by:

r = Aξ̂ − b = Aξ − b + A(ξ̂ − ξ ) = A(ξ̂ − ξ ). (17)

The ith component of the residual vector r is

ri =
ne∑
j=1

Ai, j (ξ̂ j − ξ j ),

which for the air (σ̂ = iωε0) reduces to

ri = −ω2ε0

∫
�

Ni · ∇ϕ̃.

Thus, the residual will be nonzero, but very small—of the order
ω2ε0 for air. Even if we modify the field substantially by adding
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∇ϕ̃, there may be hardly any difference in the residual value. An
eigenvalue analysis of ill-conditioning of eq. (8) is presented in
Appendix A.

For iterative solutions to eq. (8), the typical procedure for re-
moving spurious curl-free fields, called divergence correction, is
to compute several solution iterations, estimate current divergences
over the discretized model domain, calculate the curl-free fields
arising from such divergences and remove these fields from the full
iterative solution at that stage (e.g. Smith 1996; Newman & Alum-
baugh 2000; Sasaki 2001; Siripunvaraporn et al. 2002; Farquharson
& Miensopust 2011). This is repeated numerous times until final
convergence. One can also add the divergence condition to the sys-
tem of equations (Vardapetyan & Demkowicz 1999; Schwarzbach
2009; Grayver et al. 2013) although that increases the number of
unknowns in the linear system. For example, Grayver et al. (2013)
in their approach increase the number of unknowns by one-third.

We present an alternative technique that achieves an efficient
and accurate divergence correction for our FE method. Consider
any domain �, with spatially changing conductivity σ̂ , which in-
cludes both air and the subsurface. The space H0(∇×, �), defined
in eq. (6), may be decomposed into the null space of the curl and the
space orthogonal to it (Gunzburger & Bochev 2009). Specifically:

H0(∇×,�) = R(∇) ⊕ R(∇)⊥σ̂ (18)

For every M ∈ H0(∇×, �), there is a unique decomposition:

M = ∇ϕM + M⊥, ϕM ∈ H 1
0 (�), M⊥ ∈ R(∇)⊥σ̂ (19)

where

H1
0(�) =

{
ϕ : � → C :

∫
�

(|ϕ|2+|∇ϕ|2) < ∞, ϕ|∂�=0

}

R(∇) = {∇ϕ : ϕ ∈ H1
0(�)}

R(∇)⊥σ̂ =
{

M ∈ H0(∇×, �) :
∫

�

σ̂ M · ∇ϕ = 0 ∀ϕ ∈ H1
0(�)

}

Space H1
0(�) is a space of complex valued scalar potentials, the

square integrable scalar fields which have a gradient that is square
integrable. One can think of the members of this space as of scalar
functions that are continuous across any surface inside the domain.
The ‘0’ subscript corresponds to the assumption of zero value on
the boundary �. Once the gradient ∇ is applied to those functions
one obtains the space R(∇). Because ∇ × ∇ϕ = 0, R(∇) is in the
null space of the curl. Moreover, the range of the gradient on H1

0 is
exactly equal to the null space of the curl in the space H0(∇×, �)
(Gunzburger & Bochev 2009). For more thorough discussion of
Sobolev spacesH0(∇×, �) andH1

0(�) see Girault & Raviart (1986)
and Adams & Fournier (2003). The decomposition in eq. (18) allows
us to represent a field from H0(∇×, �) as a sum of two fields, one
in the null space and the other orthogonal to it. This decomposition
is called the Helmholtz decomposition or the Hodge decomposition
of H0(∇×, �). The proof of its existence for the case of a constant
σ̂ may be found in Amrouche et al. (1998). For a proof given our
case of non-constant σ̂ when � includes both air and the earth’s
subsurface, one should consider a Poisson equation for ϕM:∫

�

σ̂∇ϕM · ∇φ =
∫

�

σ̂ M · ∇φ

for ϕM , φ ∈ H1
0, which has a unique solution.

In the case of a constant σ̂ , it is a decomposition into a curl-free
part ∇ϕM and a divergence-free part M⊥, which is orthogonal to
R(∇). In the constant σ̂ case it is the same as representing the original

Figure 2. Hodge decomposition of the solution E, together with the added
error of the form ∇ϕ̃.

field using a vector and a scalar potential with a Coulomb gauge,
in which case the vector potential is divergence free (Mitsuhata &
Uchida 2004).

In our context, when σ̂ �= constant, we have ∇ · (σ̂ M⊥) = 0,
which may be seen through integration by parts of the condition
defining R(∇)⊥σ̂ . Also, if σ̂ ∈ R and σ̂ > 0 one may interpret the
space R(∇)⊥σ̂ as the space orthogonal to R(∇) with an inner product
having σ̂ as the weight.

To visualize the subsequent derivations consider Fig. 2. Let the
solution E to eq. (5) be represented using the Hodge decomposition
(19), namely

E = ∇ϕE + E⊥, ϕE ∈ H 1
0 (�), E⊥ ∈ R(∇)⊥σ̂ . (20)

By setting M = M⊥ ∈ R(∇)⊥σ̂ and then M = ∇ϕ, one can show
that eq. (5) is equivalent to two uncoupled equations on R(∇)⊥σ̂ and
R(∇) respectively:∫

�

1

μ
∇ × E⊥·∇ × M⊥ + iω

∫
�

σ̂ E⊥·M⊥ = iω
∫

�

J imp·M⊥

iω
∫

�

σ̂∇ϕE · ∇ϕ = iω
∫

�

J imp·∇ϕ.

(21)

The first equation is satisfied ∀M⊥ ∈ R(∇)⊥σ̂ , the second
∀ϕ ∈ H1

0(�). The second equation ensures that the component ∇ϕE

is proper, so if we impose this equation, we may remove the error
of the form ∇ϕ̃. In a discrete case, we are dealing with Hh

0 (∇×, �),
which is the space of first-order edge elements. An important prop-
erty of this space is that a Hodge decomposition similar to eq. (18)
exists (see Gunzburger & Bochev 2009). The space H1

0(�) has to
be replaced with H1,h

0 (�)—the space spanned by first-order nodal
shape functions on the same mesh.

The correction is applied as follows. Let E, be an approximation
of the electric field given by eq. (7). Solve Poisson equation for
∇ϕcorr ∈ H1,h

0 (�), ∀ϕ ∈ H1,h
0 (�):

iω
∫

�

σ̂∇ϕcorr · ∇ϕ = iω
∫

�

(σ̂ E − J imp)·∇ϕ. (22)
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The corrected electric field Ecorr is

Ecorr = E − ∇ϕcorr. (23)

Note that the corrected field satisfies the original eq. (5) in a
discrete setting for E, M ∈ Hh

0 (∇×, �). In fact, if infinite precision
was used to solve eq. (5) numerically, there would be no need for
the correction. The correction considers the original equation on
a subspace and removes a numerical error introduced by a direct
solver that uses finite precision.

The correction may be given further justification by con-
sidering the second equation in eq. (21). Using the fact that
E⊥ = E − ∇ϕE ∈ R(∇)⊥σ̂ and integrating by parts, we obtain:

iω
∫

�

(∇ · (σ̂ E))ϕ = iω
∫

�

(∇ · J imp)ϕ. (24)

Thus, we ensure that the divergence of electric current is proper
weakly, on average, with ϕ ∈ H1,h

0 (�) as a weight. The right-hand
side of eq. (22) may be viewed as excessive divergence of the electric
current, which is removed when eq. (23) is applied.

Divergence correction requires solving the Poisson eq. (22),
which we do using nodal-based FEs. The divergence correction sys-
tem matrix has three times less variables than the original system
matrix, and at least four times less non-zeroes. In our experience,
the divergence correction requires much less run time than solving
the original system (8); factorization phase is at least eight times
faster and solve phase is at least five times faster.

Although the main computational cost is related to the solution
of the linear system (22), it is not the only cost of the divergence
correction. One needs to calculate the system matrix of eq. (22),
evaluate the right-hand side of eq. (22), and once ϕcorr is obtained
one needs to apply the correction using eq. (23). We have paral-
lelized those calculations using MKL SparseBLAS library as well
as using OpenMP. After parallelization, all of those additional calcu-
lations for a model with a mesh 101x 101y 50z and 256 MT receivers
are more than 2.5 times faster than the solution of eq. (22) using
MKL PARDISO and constitute about 3.4 per cent of the forward
modelling time. The divergence correction sparse solve with MKL
PARDISO takes about 9 per cent of the forward modelling time.

4 F I E L D A N D M T R E S P O N S E
JA C O B I A N S

A primary goal in developing the FE simulator is to apply it to
non-linear inversion of MT field data. As described more fully in
our companion paper, we examine both model and data space ap-
proaches to parameter updates under the Gauss–Newton framework
(Siripunvaraporn et al. 2005). For defining terms as related to FE
simulation, the model space update equation is (e.g. Tarantola 2005;
Mackie et al. 1988):

[J T Bd J + λBm](mn+1 − m0)

= J T Bd [d − F(mn) + J (mn − m0)], (25)

where F(mn) is the MT response at iteration n using our FE code, d is
the vector of Nd observed MT data weighted against their estimated
covariance matrix B−1

d , B−1
m is a model covariance matrix which

stabilizes or regularizes the Nm model parameter variations, m0 is a
reference model, and λ is a constant controlling trade-off between
data fit and model parameter stabilization.

Term J is the Nd by Nm matrix of parameter Jacobians or deriva-
tives (Tarantola 2005) which specify the incremental change in the
value of an MT response datum (in Z or K) to an incremental change

in the value of a subsurface electrical conductivity parameter. First,
we focus on the derivatives of the secondary fields. There have been
numerous ways to express this in the literature (e.g. McGillivray
et al. 1994); here we basically generalize from the 2-D approach of
deLugao & Wannamaker (1996). Recalling the interpolation vectors
w, consider an entry σ j of the FE mesh conductivity vector σ . The
entry may correspond to a single element or a group of them. The
derivative of a field value wTξ k with respect to σ j may be evaluated
as:

∂(wT ξ k)

∂σ j
= wT ∂ξ k

∂σ j
= wT ∂(A−1bk)

∂σ j
= wT

[
∂ A−1

∂σ j
bk + A−1 ∂bk

∂σ j

]

= wT

[(
−A−1 ∂ A

∂σ j
A−1

)
bk + A−1 ∂bk

∂σ j

]

= wT

[
−A−1 ∂ A

∂σ j
(A−1bk) + A−1 ∂bk

∂σ j

]

= wT

[
−A−1 ∂ A

∂σ j
ξ k + A−1 ∂bk

∂σ j

]

for source polarization k. This reduces to

∂(wT ξ k)

∂σ j
= wT

(
A−1

[
− ∂ A

∂σ j
ξ k + ∂bk

∂σ j

])
. (26)

As written, in order to calculate the derivatives of the field values
with respect to all (σ j )

Nm
j=1, one would have to solve one linear equa-

tion for each polarization and for each σ j, and then multiply by
the proper w, to obtain the desired derivatives. That yields 2 · Nm

linear systems to solve, where Nm is the number of inversion cells.
However, exploiting interchangeability of sources and receivers in
reciprocity, or using the adjoint method, or simply using the as-
sociativity of the matrix multiplication, eq. (26) may be rewritten
as

∂(wT ξ k)

∂σ j
= (

wT A−1
) [

− ∂ A

∂σ j
ξ k + ∂bk

∂σ j

]

= (
A−T w

)T
[
− ∂ A

∂σ j
ξ k + ∂bk

∂σ j

]
. (27)

In this form we solve one linear system for each field component.
The method yields 5 · Nrec linear systems to solve, where Nrec

denotes the number of receivers. The matrix A, defined at (9), is
symmetric, so A−T = A−1. To calculate A−1w, we are solving a
linear system where the source w, defined in eqs (14) and (15),
is distributed on the edges surrounding the receiver location (cf.
deLugao & Wannamaker 1996).

Jacobians for impedance Z and tipper K at each receiver follow
by applying the chain rule to the equations for the impedance and
tipper elements of eq. (13) defined from applying the two source
polarizations k = 1, 2. The individual impedance element deriva-
tives are listed in Newman & Alumbaugh (2000) and the tipper
element derivatives follow by analogy. For inversion implementa-
tion, derivatives are converted to be with respect to log10 resistivity
(Hohmann & Raiche 1988).

The main computational cost of the calculation of the Jacobian is
the factorization of A and application of its inverse to w, for which
example run times are given further in the paper. Yet one also needs
to use the result of this calculation in eq. (27). And as for large
models the Jacobian matrix is large, it might take a notable time to
fill its entries in the memory. In our implementation with OpenMP
the time of evaluation of eq. (27), once (A−Tw) is obtained, and the
successive evaluation of the derivative of Z and K with respect to

 at U
niversity of U

tah on N
ovem

ber 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


80 M. Kordy et al.

Figure 3. Speedup of MKL PARDISO and MUMPS for a fixed problem with mesh with 85x 85y 50z cells on a single workstation with 24 cores. For PARDISO,
runs with different number of OpenMP threads are compared. For MUMPS, we present runs with different number of MPI processes, each using a single
OpenMP thread, which is the configuration with the smallest total time (factorization + solution of 500 rhs). We show the speedup of the factorization phase,
the solution phase with 500 rhs, and of both of the phases together.

the model, takes about 4 per cent of the forward modelling time for
a model with a mesh 101x 101y 50z and 256 MT receivers.

5 D I R E C T S O LV E R

Several attractive features of direct solutions were listed in Intro-
duction. Here we investigate the viability of 3-D FE modelling and
inversion performed on single-chassis, multicore, SMP computers
typically used in server applications and which are relatively afford-
able. We were attracted to this platform at first for direct solution
of the model-space, Gauss–Newton parameter step equation, which
was parallelized using a matrix tiling approach under OpenMP
compiler directives and showed good scalability across an 8-core
workstation with 32 GB RAM (Maris & Wannamaker 2010). Ini-
tially this tiling solution was applied also to the banded (daSilva
et al. 2012) FE matrix and showed good scalability across a newer
24-core workstation with 512 GB RAM (Kordy et al. 2013). How-
ever, solution time overall was slower than desired, for example
taking over 1 hr per frequency for a mesh 85x 88y 50z and two
source vectors (i.e. no Jacobians).

Thus, in an effort to improve speed, we have investigated two
popular computational libraries for directly factorizing A = LDLT

and reducing source vectors. One is MUMPS (Amestoy et al. 2001,
2006), utilized by others (e.g. Oldenburg et al. 2008; Streich 2009;
daSilva et al. 2012; Oldenburg et al. 2013). The other is PARDISO
(Intel MKL implementation) (Schenk & Gärtner 2004). PARDISO
has turned out to be faster in a shared memory setting.

The matrix A in eq. (9) is complex valued and symmetric (but not
Hermitian). Both solvers initially find a permutation of variables, P,
and the matrix is replaced with PAPT (permutation of both columns
and rows of the matrix, so that the matrix remains symmetric). Then
a lower triangular matrix L and a diagonal matrix D are found such
that PAPT = LDLT. The last step is the solve phase, that is, solving
the system (8), which may be written as

P APT (Pξ ) = Pb or L DLT ξ̃ = Pb, where ξ̃ = Pξ

Permutation P is chosen to minimize the number of nonzero values
in L matrix, and to allow for parallelization of the factorization and
solve phases.

Both MUMPS and MKL PARDISO use third party ordering li-
braries to find P. For a comparison of the two solvers, we used
the METIS (Karypis 2003) ordering library and thus both MUMPS

Figure 4. Outcropping double brick resistivity model, together with the
mesh used. Element boundaries are drawn as solid green lines.

and PARDISO calculate L having the same number of non-zeros.
For a mesh with 85x 85y 90z cells, on a 24-core workstation (four
Intel E5-4610 Sandy Bridge hex-core processors at 2.4 GHz), the
factorization time of matrix (9) with MKL PARDISO was typically
∼40 per cent of that of MUMPS. The solution phase of MKL PAR-
DISO took about 80 per cent of that of MUMPS. This may reflect
the fact that PARDISO is written for the shared memory architec-
ture (although there is an option to use it on a cluster), whereas
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3-D MT FEM simulation with direct solvers 81

Figure 5. Forward MT response of a double brick model for profile at y = 16 km for comparison with Integral Equation code response. Frequencies are
0.001 and 0.1 Hz.

MUMPS is written for a distributed memory system. Additionally
MUMPS uses more memory if many MPI processes are used, as
the data are copied between the processes. MUMPS with 24 MPI
processes uses more than twice the memory than that when run with
one MPI process, which is about the amount of memory that MKL
PARDISO needs.

The scalability of MKL PARDISO (version 11.2 of MKL library)
and MUMPS (version 4.10.0) libraries is presented in Fig. 3. With
24 cores, the speedup of the factorization and solution phases is 18

and 13, respectively for PARDISO. For comparison, the speedup of
MUMPS with 24 MPI processes, for the same problem, is 9 and 7
for the factorization and solution phases respectively. Furthermore
we found that MUMPS scalability nearly plateaued between 12 and
24 cores. The times of computation for 24 cores were 81 and 111 s
for factorization and solution phases in the case of PARDISO, and
190 and 153 s for factorization and solution phases in the case of
MUMPS. Performance improvements may be expected in future
versions of either library.
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Figure 6. Real component of electric field Ex at a height of 2 km for the double brick model calculated before and after divergence correction for a frequency
of 0.001 Hz. Y-axis scales are different for figure on the right and on the left; the field before correction is 100 × larger overall in magnitude. Tick marks along
top plot border show calculation point locations.

6 E X A M P L E F O RWA R D C A L C U L AT I O N S

The accuracy of our 3-D FE forward code is tested against inde-
pendent algorithms. These include a standard test of conductive
and resistive heterogeneity under a flat surface, but we also focus
on topography as a principal rationale for this work. Tests high-
light the strength of the FE method in defining smooth, non-jagged
topographic slopes.

6.1 Outcropping double brick Model

First we consider the popular, outcropping double brick 3-D model
originally proposed in 2-D by Weaver et al. (1985, 1986) and in-
cluded in the Commemi collection of trial models by Zhdanov et al.
(1997). The central portion of its FE mesh appears in Fig. 4. The
mesh has 52x 53y 31z elements, out of which the two bodies consist
of 20x 21y 8z elements. We used 10 layers for the air and 21 layers
for the earth. Element sizes grow steadily away from the centre of
the domain to a total distance of 555 km from the centre. The 1-D
background model is the true 3-D model without the two outcrop-
ping bricks. All calculations are done in double precision.

Complex tensor impedance Z and tipper K elements were cal-
culated at the surface, over the cells’ centres, along a profile at
y = 16 km for frequencies of 0.001 Hz and 0.1 Hz. They are com-
pared in Fig. 5 with those computed using the Integral Equations
code of Wannamaker (1991), for which the body discretization co-
incides with that of the FE mesh. The agreement between the two
codes clearly is very good, and compares favourably with the check
against a finite difference approach in Mackie et al. (1993). Com-
parison was similarly good for the profile at y = 0 km (not shown)
although Zxx, Zyy, Kzy are zero there.

The requirement for, and effectiveness of, the divergence correc-
tion described previously, is demonstrated for a profile 2km in the
air over the centre of the double brick model in Fig. 6. On the left is
the electric field in the x-direction across the sides of the body at the
low frequency of 0.001 Hz. It consists mainly of numerical noise
due to spurious curl-free electric fields. Nevertheless, as seen on
the right side, the divergence correction is able to remove the error
leaving a response which is a smooth, upward-continued version of
a surface response (cf. Zxy in Fig. 5). Thus we are able to model
accurate E-fields in the air with our FE method as would be desired
under efforts to create airborne MT platforms (e.g. Macnae 2010).

Figure 7. YZ cross-section of a 2-D valley, together with the central part of
the 3-D FEM mesh. Element boundaries are drawn as solid green lines.

Figure 8. XZ cross-section of the 2-D valley, together with the 3-D FEM
mesh. 5× vertical exaggeration.

6.2 2-D valley and hill

Because topographic simulation and inversion is a principal moti-
vation for this work, we present several accuracy checks here. First,
we compare fields over an elongate 3-D valley with those of the
2-D valley model of Wannamaker et al. (1986) computed with their
nodal FE code. The valley is 450 m deep, 500 m wide at the bottom
and 3 km wide at the top in a host of resistivity ρ = 100 �m (3-D
cross-section in Fig. 7). In 3-D, infinite strike is approximated with a
30 km length (Fig. 8). The entire 3-D mesh consisted of 39x 41y 30z
elements while the valley portion was covered by 21 elements across
the y-direction. The mesh extended to 6 km above the ground, 11 km
below the ground and laterally 26 km and 14 km from the valley
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Figure 9. Normalized EM fields along the profile across the 2-D valley, for x = 0 km.

Figure 10. YZ cross-section of a 2-D hill, together with the central part of
3-D FEM mesh.

in x- and y-directions respectively. The 1-D background model is a
100 �m half space.

A coarse and a finer 2-D discretization are considered. The coarse
valley is made up of 20 layers of elements each 22.5 m thick. The
finer valley is made up of 40 layers of elements each 11.25 m thick.
Element dimensions grow steadily away from the centre to a total
distance of over 20 km to the sides and depth. Note that the 2-D
mesh is rectilinear such that slopes must be made up of triangles
rather than deformed quadrilaterals (Wannamaker et al. 1986). The
E- and H-fields across the valley centre normalized by the primary
fields are plotted in Fig. 9. The responses of the 3-D and 2-D codes
are in close agreement.

For the hill model, we consider the high frequency of 1000 Hz to
test whether the 3-D code can accurately simulate refraction of the
EM fields normal to the slope, as was done in 2-D by Wannamaker
et al. (1986). The small skin depth (∼160 m) requires a finer mesh

Figure 11. The ρa and phase responses from the 2-D code and 3-D codes for the 2-D hill at 1000 Hz. TE denotes the values derived from Zxy, TM denotes the
values derived from Zyz.
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Figure 12. Central part of the finer mesh for the 3-D hill model.

closer to the hill surface, although the lateral limits do not have
to be so far (Fig. 10). The mesh extends 3 km above the highest
point, 1.3 km below the base and laterally 5 and 4 km from the hill
in x- and y-directions. The 2-D hill has the same dimensions and
discretization as the valley for both coarse and fine versions. We
compute the E- and H- fields parallel to the slope of the hill, and
use those values to calculate apparent resistivity ρa.

The ρa should approach the true resistivity of the ground
(100 �m) at high frequency because the total EM fields ideally
become purely parallel to the slope. We present ρa and phase for
TE and TM modes in Fig. 11. Note that for both fine mesh 2-D
code and 3-D code results, away from breaks in slope, ρa is close
to 100 �m and phase is close to 45◦. In fact, the 3-D phase results
look the most accurate, which may reflect a greater ease for lay-
ers of hexahedral elements to simulate essentially 1-D fields than
for triangles, although the 2-D results are converging with finer
discretization.

6.3 3-D trapezoidal hill

The next test model is the 3-D hill model considered by Nam et al.
(2007). It has the same dimensions as the previous 2-D hill, but is
square in horizontal cross-section (see Fig. 12). It is 0.45 km high,
0.5 km wide at the hilltop, 2 km wide at the base with resistivity of
100 m. It is calculated for 2 Hz, and the MT response is compared
to that of Nam et al. (2007) and Ren et al. (2013). The background
1-D model is a 100 �m half space. Two grids were considered, the
finer grid being 97x, 97y, and 50z while the coarser grid is 27x, 27y,
24z. The ρa, phase and the tipper along a profile across the centre of
the hill are presented in Figs 13 and 14. The MT response calculated
in Nam et al. (2007), Ren et al. (2013) and the field calculated by
our FE code appear very similar.

6.4 Mount Erebus volcanic edifice, Antarctica

The prior topographic models involve relatively simple shapes and
slopes. To test our algorithm’s ability to accurately simulate topo-
graphic response of a complex natural structure, we consider Mount
Erebus on Ross Island, Antarctica. Rising from sea level to 3794 m
elevation, it may be the best example of an active phonolitic volcano
(Moussallam et al. 2013). Our group has begun a comprehensive

Figure 13. Apparent resistivities and phases for the 3-D hill model along
a profile across the hill compared with the result of Nam et al. (2007). The
results of Nam have been discretized from their plots.

Figure 14. Tipper (x-component) for the 3-D hill model along a profile
across the hill compared with the result of Ren et al. (2013) calculated on
their seventh mesh. The results of Ren et al. have been discretized from their
plots and converted to eiωt time dependence.

3-D MT field survey to verify petrological models for magma gen-
esis and transport (Hill et al. 2015). One season of fieldwork has
been completed in 2014–2015, with two more consecutive seasons
mobilizing at the time of this writing. Final responses are to be avail-
able for modelling in mid-2017. All sites are placed by helicopter
assist, enabling relatively uniform coverage even in steep terrain.
The digital elevation model (DEM) for Ross Island and surrounding
bathymetry was provided by the New Zealand GNS Science organi-
zation at 40 m lateral spacing and ±6 m vertical accuracy from the
resource described in Csatho et al. (2008) and the Ross Sea map of
Davey (2004).

The main test is one of convergence with discretization, which
involves three aspects. The first is convergence of MT response with
mesh discretization for a fixed topographic geometry. The second is
convergence of the subsampled topography towards the true surface
with finer meshing. The third is convergence of computed response
as mesh receiver location approaches true receiver location with
discretization. As noted previously, mesh receivers are placed over
element centres consistent with the fact that a single magnetic flux
is estimated from ∇ × E around cell edges; this is standard both
for first order Nédélec elements and for staggered grid finite differ-
ence methods (e.g. Madden & Mackie 1989; Mackie et al. 1993;
Siripunvaraporn et al. 2002).

We consider five meshes, where mesh 1 is the coarsest (35x
52y 26z) and mesh 5 is the finest (127x 193y 101z) (Fig. 15; the
intermediate mesh 3 is shown in Fig. 1). At each step, the mesh is
refined by a factor of

√
2, so that in two steps the mesh is refined by

a factor of 2. The location of the receiver on each mesh is the face
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Figure 15. Meshes 1 and 5 for Mount Erebus model. Black dots show the locations of MT data collected to date, while grey dots are planned locations. Three
light red dots show the true location of receivers for which MT responses are considered here. Dark red dots are the location of the closest surface face centre,
where the fields are calculated.

centre closest to the true receiver location. The steep cone of Mount
Erebus has the elements with the smallest x and y extent, the rest
of Ross Island has its elements up to two times larger, and around
the island the elements grow at a constant geometrical rate to reach
the boundary of the domain which is 500 km away. The bottom
and the top of the domain are at ±500 km distance from sea level.
Bathymetry around the island is included to a distance of ∼200 km
whereupon it is terminated, although seawater depths are only a
few hundred meters until several kilometres from the shoreline.
Additionally for each mesh, the elevation of the surface vertices
was calculated as an average of the DEM on an area comparable
to the horizontal extent of the element. As a result, the topography
represented on a mesh converges towards the true topography as the
mesh gets finer.

The Mount Erebus model is given a uniform resistivity of 100 �m
in order to illustrate the effects of topography and meshing. Al-
though it is difficult to isolate the three prior issues, if responses from
all five meshes are reasonably close and converge with discretiza-
tion, then our approach to modelling natural topography should be
robust. We consider three MT receivers in Fig. 15 whose local slope
is 7–8◦, 28–25◦ and 32–40◦ respectively from meshes 1–5. Sites 1
and 2 are actual survey locations; 2 in particular required picketed
roped travel from the landing spot and is the steepest of the project.
Site 3 is hypothetical and considered inaccessible, and so should
be a limiting test. The complex impedance and tipper elements are
plotted in Fig. 16. For plotting, the impedance Zk is normalized
relative to that at mesh 5 according to

Z̃k(i, j, l, m) = Zk(i, j, l, m)
1
2 |Z5(1, 2, l, m) − Z5(2, 1, l, m)| (28)

for i = 1, 2 j = 1, 2 for mesh k, receiver l and frequency m. The
denominator in eq. (28) is the impedance invariant for mesh 5.

Fig. 16 shows good agreement across meshes and good conver-
gence of the MT responses with mesh refinement. As a measure of
error, a relative difference (RD) between the responses from mesh k
and mesh 5 is computed in a normalized root-mean-square fashion:

RD(k, 5) =

√√√√ 1

12Nrec Nfreq

Nrec∑
l=1

Nfreq∑
m=1

R2
l,m (29)

where

R2
l,m =

2∑
i=1

2∑
j=1

∣∣Z̃k(i, j, l, m) − Z̃5(i, j, l, m)
∣∣2

+
2∑

j=1

|Kk( j, l, m) − K5( j, l, m)|2

Values of RD are listed in Table 1. With mesh refinement, the
topography changes and the receivers shift modestly. This may be
degrading the order of convergence slightly, which shows a value of
about 0.8 instead of the ideal 1. Nevertheless, the relative differences
are small compared to typical error floors adopted in 3-D inversion,
for example 5 per cent on the impedance elements by Meqbel et al.
(2014). This is achieved even for the receiver where local slope
reaches 40 degrees.

As a second test, in Appendix B we present the results of a high
frequency test similar to the one of Fig. 11 for the 2-D hill. For each
receiver, we rotate the coordinate system such that the X and Y axes
are parallel to the slope and the Z axis is perpendicular to the slope
and calculate the MT response in those coordinates. We observe that
as frequency increases, the apparent resistivity approaches 100 �m,
the phase approaches 45◦, and the tipper components approach 0
as should be expected. Note that the on-diagonal impedance ele-
ments in Fig. 16 also approach zero towards high frequency. The
asymptotes occur near 100 Hz, above which results begin to diverge,
although this is near the highest frequency usefully interpreted for a
survey of this scale. We might expect further modest mesh changes
as the project progresses, but these results demonstrate the efficacy
of our approach to topographic modelling.

6.5 Jacobians test calculations

Next, we test the calculation of MT response Jacobians as they
are essential for inversion purposes. We consider derivatives with
respect to log10 resistivity model m = (m j )

Nm
j=1, where in principle

each mj could be parsed as finely as a single FE. We consider
the coarse 3-D hill mesh with receivers over the centres of surface
element faces at y = 0 km. For the test parameter we use two adjacent
FEs on the facing hill slope (Fig. 17). Jacobians are calculated using
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Figure 16. Normalized impedance Z̃ (eq. 28) and tipper K as a function of frequency for three receivers of the Mount Erebus model. The denominator in eq.
(28) is abbreviated here as |Z_5|.

Table 1. Comparison of the response of mesh k with the response of the
finest mesh 5 for the three receivers together and separately using eq. (29).

RD(1,5) RD(2,5) RD(3,5) RD(4,5)

All 3 recs 2.36% 1.89% 1.69% 0.79%
rec 1 2.62% 2.28% 1.69% 0.88%
rec 2 1.5% 1.17% 0.7% 0.63%
rec 3 2.75% 2.04% 2.29% 0.85%

reciprocity as described previously and they are compared with a
symmetric difference approximation of the derivative, that is,

∂(Z , K )

∂m j
(m) ≈ (Z , K )(m + e j h) − (Z , K )(m − e j h)

2h

where ej is a vector with only one nonzero entry at the jth position,
which is equal to 1. In Fig. 18, we present the result of calculation for
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Figure 17. Central part of the coarse mesh of 3-D hill, together with the location of receivers and the chosen inversion cell mj.

frequencies of 100 Hz and 0.001 Hz for all components of Z, K and
for the inversion cell marked in the model figure. We used h = 0.05.
A wide range of frequencies and various locations of the inversion
cell have been tried, including the location under the receiver line. In
all cases the values of the Jacobians showed very close agreement,
with the relative difference no more than 0.2 per cent for non-zero
components of the Jacobian.

7 E X A M P L E RU N T I M E S

In Tables 2 and 3, we present run times related to solving eq. (8) with
the MKL PARDISO library. Those run times constitute the main
computational time of the forward modelling. For a model with a
mesh 101x 101y 50z and 256 MT receivers other calculations (the
calculation of the system matrix A and the source vectors b, sparse
calculations related to divergence correction and the evaluation of
the Jacobian, once the solutions A−1w are obtained) take about
13 per cent of the forward modelling time. The calculations were
done on a 24 core workstation (four Intel Xeon E5-4607 v2 Hexa-
core 2.60 GHz processors). Recall that MKL PARDISO finds a
permutation matrix P (reordering phase), then calculates matrices
L, D such that PTAP = LDLT (factorization phase). Then L and D
are used to solve linear system (8) for numerous rhs vectors b.

Times in the tables correspond to work done for a single fre-
quency. In order to calculate full MT Jacobians, for each receiver
location one needs to solve five linear systems (8). For example,
500 rhs in Table 3 would correspond to a survey with 100 receivers.
As expected, run-time increase is geometric with respect to number
of unknowns. In Table 2 we present the reordering time, which is
about 10 times less than the factorization time with 24 cores. Here it
is calculated using the sequential library METIS, which we found to
be stable. METIS uses only one core; thus on a machine with more
cores, the reordering time will become more significant. However,
since reordering depends only on the non-zero pattern of the matrix
and not on entry values, reordering is the same for every frequency
so it may be reused for all frequencies following the first.

With a data-space parameter step formulation, as discussed in Part
II, the inversion run time will be dominated by the forward problem
and Jacobians. For the largest test mesh of Table 2 and assuming
each element can be a parameter, a regular 400 site survey (20 × 20)
could be inverted using a mesh with six columns of parameters per
site in both x- and y-directions leaving nearly 30 columns of padding
to far distances outside the survey domain.

8 C O N C LU S I O N S

FEs provide a flexible and accurate means of simulating EM re-
sponses of 3-D resistivity structure beneath topographic variations.
Hexahedral elements provide a straightforward means of repre-
senting earth surface slopes, are compatible with the Helmholtz
governing equation as discretization increases, and generate FE
system matrices of simple structure. In particular, discretization
requirements for topography at high frequencies are modest com-
pared to those for traditional rectilinear meshes because layers of
elements can lie parallel to the earth’s surface. Further research is
warranted into element discretization and geometry, applications for
bathymetry and seafloor responses, and more complex background
structures. By invoking an efficient current divergence correction,
accurate E-field results may be obtained at very low frequencies and
small admittivities, even those of dielectric air. Because we utilize a
secondary field approach, it should be straightforward to generalize
to finite source problems. As will be shown in Part II, hexahedral
elements also provide a simple path to regularized inversion, for ex-
ample by direct mapping of triaxial parameter roughness damping
into deformed coordinates.

Efficient and affordable parallel computing solutions have
emerged that are putting direct solutions to fairly large 3-D EM
simulation problems within reach of an increasing number of users.
These include a powerful public-domain library for direct solutions
(MUMPS) that is seeing increased community use or a commer-
cial library MKL PARDISO as exploited in this paper. Because the
factorization provided by direct solvers allows economical solution
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Figure 18. Comparison of a Jacobian of Z, K calculated using reciprocity and symmetric difference. The relative difference between the plotted values is less
than 0.1 per cent.

of large numbers of source vectors, explicit and accurate values of
parameter Jacobians can be obtained. Technological advances also
include single-box, server-class workstations with numerous cores
and substantial RAM that provide relatively affordable computing.

Parallelization of the direct solver MKL PARDISO on multicore
SMP computers is good, reaching an overall speedup of 15 on a 24
core machine for the forward problem calculations. Parallelization
also could be increased with distributed computing using multiple
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Table 2. MKL PARDISO analysis and factorization phase times (in min:sec) for factoring matrix A in eq. (8) for various meshes.

Number of Number of Number of Reordering Factorization RAM memory
Mesh unknowns A non-zeroes in A non-zeroes in L time time used (GB)

30x 30y 25z 62 785 1 008 965 24 225 432 00:01 00:01 0.68
50x 50y 35z 250 635 4 111 215 180 177 821 00:05 00:13 4.17
75x 75y 45z 734 820 12 179 490 770 644 591 00:17 01:00 14.55
100x 100y 50z 1 460 250 24 316 190 1 981 092 177 00:37 03:48 35.09
125x 125y 55z 2 519 680 42 085 390 4 135 494 960 01:08 10:55 70.41
150x 150y 60z 3 969 360 66 443 340 7 022 172 676 01:53 21:03 117.10
176x 176y 70z 6 394 150 107 274 730 14 344 449 730 03:18 64:10 233.80

Table 3. MKL PARDISO solution phase time (in min:sec) for the linear system (8), for various
meshes and numbers of rhs vectors b.

Mesh 100 rhs 500 rhs 1000 rhs 1500 rhs 2000 rhs

30x 30y 25z 00:01 00:03 00:07 00:10 00:13
50x 50y 35z 00:02 00:11 00:23 00:34 00:45
75x 75y 45z 00:11 00:54 01:48 02:42 03:36
100x 100y 50y 00:05 00:23 00:46 01:10 01:33
125x 125y 55z 01:24 06:58 13:57 20:55 27:53
150x 150y 60z 02:09 10:47 21:34 32:22 43:09
176x 176y 70z 03:41 18:23 36:47 55:10 73:34

SMP. Nevertheless, direct simulations including Jacobians can be
done on a single workstation for meshes with one million elements
in less than 1 hr per frequency.
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A P P E N D I X A

To explain the ill-conditioning related to spurious curl-free E-fields,
let us analyse eigenvalues of the system matrix A. A good approxi-
mation of those eigenvalues are eigenvalues of the operator

L(M) = ∇ ×
(

1

μ
∇ × M

)
+ iωσ̂ M. (A1)

L should be defined on some suitable finite dimensional space,
dependent on the mesh size h. First, let us consider infinite dimen-
sional space of vector fields M ∈ H0(∇×, �), with the additional
assumption that ∇ × 1

μ
∇ × M exists and is square integrable. Let

the domain be a cube � = [0, M]3 with σ̂ , μ = const. It is straight-
forward to verify that the eigenvectors of L are of the form
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for kx , ky, kz ∈ N where
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Defining |k|2 = k2
x + k2

y + k2
z one can write the corresponding

eigenvalues as:

λ = iωσ̂ ,
π 2|k|2
μM2

+ iωσ̂ ,
π 2|k|2
μM2

+ iωσ̂ . (A4)

By checking that L(v) = λv, one can verify that v and λ are the
eigenvectors and eigenvalues of L. For an infinite dimensional
space, we have 3 < |k|2 < ∞, yet for a discretization, with spa-
tial mesh parameter h, it would be:

3 ≤ |k|2 ≤ O

(
3

(
M

h

)2
)

. (A5)

The upper bound above would be correct if we used a finite differ-
ence discretization of the Laplacian (Trottenberg et al. 2000). We
use it for the curl as it is also a second-order differential operator.
One could consider also that in a discretized version of L, roughly
speaking, the natural numbers kx, ky, kz would be allowed to vary
from 1 to M/h.

Let us look at those eigenvalues for some practical setting for

magnetotellurics. Let M = 10 km, M
h = 50. The quantity π2|k|2

μM2 is

in the interval [2 × 10−1, 6 × 10+2]. The values of the first eigen-
value iωσ̂ for conductivity corresponding to the Earth’s subsurface
(σ̂ = 0.01 Sm−1) and air (σ̂ = iωε0) are presented in Table A1. The

Table A1. Values of |ωσ̂ | for different σ and ω. Unit of |ωσ̂ | is S Hz m−1.

ω 2π 100 Hz 2π 1 Hz 2π 0.01 Hz

Earth: σ̂ = 0.01 S m−1 6.3 6.3 × 10−2 6.3 × 10−4

Air: σ̂ = iωε0 3.5 × 10−6 3.5 × 10−10 3.5 × 10−14

Table A2. Condition number of the system matrix A as a function of fre-
quency ω and σ̂ .

ω 2π 100 Hz 2π 1 Hz 2π 0.01 Hz

Earth: σ̂ = 0.01 S m−1 9.3 × 10+1 9.3 × 10+3 9.3 × 10+5

Air: σ̂ = iω2ε0 1.7 × 10+8 1.7 × 10+12 1.7 × 10+16

corresponding condition numbers of the system matrix, defined as
cond(A) = max(|λ|)

min(|λ|) are presented in Table A2. One can see that if
a conductivity corresponding to the ground is used, the condition
number increases as the frequency decreases, yet remains at a rea-
sonable level of 10+5 even for frequency as small as 0.01 Hz. If
conductivity of the air is used, the situation is different. As the fre-
quency decreases, the condition number increases quadratically and
reaches very large value of 10+16 for the frequency 0.01 Hz.

In MTs, the domain contains both earth and air. Because of the
presence of the air, the matrix is ill-conditioned. Nevertheless, the
calculated electric field, approximated by solving eq. (8) using a
direct solver, and using eq. (7) has improper values only in the air.
The electric field below the Earth’s surface does not suffer from
numerical instability. It is also worth mentioning, that the magnetic
field, calculated using the curl of electric field as in eq. (11) has
proper values in all of the domain. It shows, that the error added to
the electric field in the air is curl-free.

The condition number of the matrix gets this large because of
the smallness of the eigenvalue λ = iωσ̂ , corresponding to the first
C in eq. (A3). Note that the corresponding eigenvector is curl-free,
whereas the other two are not. Moreover the first eigenvector is
equal to ∇ϕ, where

ϕ = M

π
sin
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π

kx

M
x

)
sin

(
π

ky

M
y

)
sin

(
π

kz

M
z

)
(A6)

and ϕ|∂� = 0. This is not a coincidence. In fact, in this case the
conductivity σ̂ is constant in the domain, and the Hodge decompo-
sition discussed in ‘Divergence correction’ section is the standard
Helmholtz decomposition. The eigenvectors of L span the space
H0(∇ ×, �) respecting the decomposition. The eigenvectors with
the first C of eq. (A3) span the space R(∇), the eigenvectors with the
second and the third C of eq. (A3) span R(∇)⊥σ̂ . The eigenvectors
form an orthogonal basis of H0(∇×, �) and the spaces R(∇) and
R(∇)⊥σ̂ are orthogonal.

A P P E N D I X B

Here we present a 3-D high frequency test similar to the one of Fig.
11 for the 2-D hill. Again, if skin depth in the subsurface is much
less than the scale of topographic variation, the incident EM wave
should refract normal to the slope and behave as if the surface is lo-
cally flat and horizontal (Wannamaker et al. 1986). For each receiver
considered in the Mount Erebus model, we rotate the coordinate sys-
tem such that X and Y axes are parallel to the slope and Z axis is
perpendicular to the slope. The MT response is calculated in those
coordinates. The apparent resistivity and impedance phase calcu-
lated using Zxy, −Zyx, and 1

2 (Zxy − Z yx ) as a function of frequency
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Figure B1. Apparent resistivity and impedance phase as a function of frequency for three receivers of the Mount Erebus model. The coordinate system in
which the impedance is calculated has X and Y axes parallel to the slope and the Z axis perpendicular to it.

are presented in Fig. B1. We observe that as frequency becomes
high, towards 100 Hz, the apparent resistivity approaches 100 �m
and impedance phase approaches 45◦, which is the response of
the 100 �m half-space. Similarly, the tipper elements (see Fig. B2)
approach 0 at high frequencies. The best results are obtained for

meshes 4 and 5 where cell thicknesses become a smaller fraction of
skin depth. The elements next to the Earth’s surface have thickness
of 100 m for mesh 1 and 25 m for mesh 5. Results begin to degrade
much above 100 Hz even for mesh 5, and would require even finer
discretization.
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Figure B2. Complex tipper elements as a function of frequency for three receivers of the Mount Erebus model. The coordinate system in which the tipper is
calculated has X and Y axes parallel to the slope and the Z axis perpendicular to it.
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