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This work develops a model order reduction method for a numerical solution of an 
inverse multi-frequency eddy current problem using a rational interpolation of the transfer 
function in the complex plane. We use the Pade interpolation in the complex frequency 
plane; this allows us to speed up the calculation of the frequency-dependent Jacobian 
in the inversion procedure without loosing accuracy. Interpolating frequencies are chosen 
adaptively to reduce the maximal approximation error. We use the error indicator that 
is equivalent to a seminorm of the residual. The efficiency of the developed approach is 
demonstrated by applying it to the inverse magnetotelluric problem, which is a geophysical 
electromagnetic remote sensing method used in mineral, geothermal, and groundwater 
exploration. In this application, the transfer function values are needed for shifts in a purely 
imaginary interval. Thus we consider the interpolating shifts in the same interval as well 
as in a purely real interval, containing the spectrum of the operator. Numerical tests show 
an excellent performance of the proposed methods characterized by a significant reduction 
of computational time without loss of accuracy of the calculated Jacobian.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Model order reduction (MOR) is a powerful technique for reduction of the dimensionality of a problem. It is especially 
efficient when the low dimensional subspace is generated using rational Krylov subspaces. This approach has become pop-
ular recently and has been used in a variety of contexts [33,1,4,14,28,32,31,2,11,13,15,16]. The efficiency of the method is 
amplified significantly by an optimal selection of the shifts for generating the rational Krylov subspace. For a particular 
matrix with uniform spectrum, the problem of selection of the optimal shifts has been investigated in [27,34,36]. However, 
this selection is not optimal for matrices with non-uniform spectrum. An excellent review of this topic is presented in [17].

A different approach, in which the shifts are added one by one in a greedy fashion, was developed in [7,5]. In this 
approach, the shifts are adapted to the spectrum of the matrix. The authors of [7] consider an adaptive choice of shifts 
for the approximation of the transfer function using rational Krylov subspaces, with an application to a time-domain elec-
tromagnetic geophysical forward problem. This adaptive choice of shifts was later generalized to non-symmetric matrices 
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[8] and to approximation of matrix functions other than the transfer function [18]. Numerical simulations in [7,18] show 
that the adaptive approach gives better results than the choice of the shifts that do not depend on the spectrum of the 
operator. Moreover, these numerical results demonstrate that the number of required shifts is not increased with the size 
of the system, and it is not strongly dependent on the spectrum. Those results encourage us to pursue an adaptive choice 
of the shifts in the current work.

The work of [7] and the rational Krylov subspace approach was extended to the inverse problem [9,38], where the 
model order reduction may be viewed as constraint on the set of admissible conductivity models or as a way to calculate a 
good approximation of the Jacobian with a greatly reduced computational time. For many inverse problems solved using a 
method (like Gauss–Newton) requiring a Jacobian, significant and sometimes dominant computational cost is related to its 
calculation. In the current paper, we use the model order reduction through rational Krylov subspaces only to speedup the 
calculations of the transfer function used in the evaluation of the Jacobian, with no loss of accuracy. The proposed method 
can be used with any standard inversion approach that requires a calculation of the Jacobian.

We develop the adaptive choice of optimal shifts method with an application to magnetotellurics (MT), which is 
a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater 
exploration. Numerically simulating the scattering of EM waves from complex three-dimensional (3D) structure is a com-
putationally demanding problem [6,12]. In particular, the scattering response usually needs to be calculated over a broad 
frequency range. Typically this may be five orders of magnitude or more with frequency sampling of 5–10 base points per 
decade. A considerable savings in computational time could result if an accurate method of interpolation of responses across 
a coarser selection of base points can be achieved.

In this case, for the forward problem, the transfer function h̃(s) = ( Ã + sB̃)−1b̃ has a complex valued right hand side 
b̃ dependent on frequency; the model order reduction method that allows to treat such problem is developed in [24]. In 
the case of the calculation of the Jacobian, the rhs b̃ is not dependent on frequency and is real valued. In our application, 
B̃ is not the identity matrix. We show that it is related to the case of B̃ = I through a scaling B̃1/2. The scaling is useful 
to simplify the analysis, but its calculation is not required in the approximation procedure. We also present a proof of the 
transfer function approximation error formula. The proof is different than the one in [22].

The transfer function values are required in a purely imaginary interval, so we consider the interpolating shifts in the 
same imaginary interval. We also consider real shifts, following the suggestion of [7]. The shifts are chosen to reduce the 
maximal error of interpolation and as the true error is unknown, an error indicator is needed. We consider error indicator 
suggested by [7] and we show that it is equivalent to any seminorm of the residual. The speedup of the algorithm with the 
model order reduction is higher when the number of frequencies considered in MT survey increases. In our numerical tests, 
the speedup of calculation of the Jacobian for 30 frequencies, is 4 times.

The paper is organized as follows. In section 2 we present the formulation of the forward magnetotelluric problem 
and Jacobian required in the inversion procedure. We explain how the approximation of the transfer function may be 
used to speedup the calculations. Next we show the theory of the approximation of the transfer function using rational 
Krylov subspaces. In section 3 we present the error indicator function and present two algorithms based on them. We 
also give details of the numerical implementation and discuss a possibility of using quadruple precision for some of the 
non-computationally demanding calculations. In section 4 we show results of numerical tests for a 3D magnetotelluric 
model with non-constant conductivity structure and with a hill and a valley in topography.

2. Theory

2.1. Inverse magnetotelluric problem

The forward and inverse magnetotelluric (MT) problem is described in detail in [25,26]. We consider a domain � that 
includes both the air and the earth’s subsurface. The earth’s surface is allowed to have a non-flat topography. In order 
to calculate the MT response due to an arbitrary 3D conductivity structure σ > 0 we consider the edge finite element 
discretization of the equation for the secondary electric field E . Though the numerical tests presented are done using lowest 
order edge hexahedral discretization, all the methods may be applied to other discretizations, such as the tetrahedral mesh, 
higher order edge elements as well as the finite difference method.

The solution space for the unknown electric field is defined as

H0(∇×,�) = {F :� →C
3 : ∫

�

(|F |2 + |∇ × F |2)< ∞, n × F |∂� = 0} (1)

Consider Maxwell’s equations in the frequency domain for a low angular frequency ω. We denote the magnetic perme-
ability by μ and the permittivity by ε . The term iωε , related to the displacement current is neglected. The equation for the 
secondary field E ∈H0(∇×) is∫

�

1

μ
∇ × E · ∇ × F + iω

∫
�

σ E · F =
∫
�

−iω(σ − σ p)E p · F (2)

for all test functions F ∈ H0(∇×). The source term in (2) depends on primary electric field E p , which is a plane wave 
traveling in the medium of the primary conductivity σp of a 1D earth. The conductivity σ is an arbitrary nonnegative 
function of position in the 3D domain, satisfying the assumption that σ ≈ σp close to the domain boundaries.
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The electric field over � is represented as a linear combination of the edge shape functions Si with coefficients ξi :

E =
N∑

i=1

ξi Si (3)

where i = 1, . . . , N are indices of the edges in � that do not lie on the boundary. By substituting this to equation (2) and 
using S j as test functions, one obtains a linear system

( Ã + iω B̃)ξ = g (4)

Ã j,k =
∫
�

1

μ
∇ × S j · ∇ × Sk, B̃ j,k =

∫
�

σ S j · Sk, g j = g j(ω,σ ) =
∫
�

−iω(σ − σ p)E p · S j (5)

The secondary magnetic field H is calculated as

H = −∇ × E

iωμ
(6)

The total field Et , Ht is a sum of secondary and primary fields:

Et = E + E p, Ht = H + H p (7)

The MT response at a receiver is obtained by finding the impedance Z and the tipper K such that⎡
⎢⎣

Et
x

Et
y

Ht
z

⎤
⎥⎦=
⎡
⎢⎣

Zxx Zxy

Z yz Z yy

Kzx Kzy

⎤
⎥⎦
[

Ht
x

Ht
y

]
(8)

is satisfied no matter what the polarization of the primary (E p, H p) plane wave is.
A receiver can be positioned at an arbitrary location r with respect to element edges via appropriate interpolation. In 

hexahedral discretization, an element has edges e1, . . . , e12. The field E at a location r inside this element is given by

E(r) =
12∑

l=1

Sel (r)ξel =
⎡
⎢⎣

(v E
x )T ξ

(v E
y)

T ξ

(v E
z )T ξ

⎤
⎥⎦ (9)

Here v E
x , v E

y, v E
z contain interpolation vectors with at most 12 non-zero values corresponding to x, y and z components of 

the edge shape functions Se1 (r), . . . , Se12 (r).
Similarly, the secondary magnetic field H(r), calculated using (6) at the location r, is given by

H(r) =
12∑

l=1

∇ × Sel (r)

−iωμ
ξel = 1

iω

⎡
⎢⎣

(v H
x )T ξ

(v H
y )T ξ

(v H
z )T ξ

⎤
⎥⎦ (10)

This time the only non-zero values of v H
x , v H

y , v H
z are x, y and z components of(∇ × Se1(r)

−μ
, . . . ,

∇ × Se12(r)

−μ

)

As a result each component of the secondary electric and magnetic fields E, H at a specific receiver location may be 
represented using

v T ξ = v T
[
( Ã + iω B̃)−1 g

]
(11)

where v is a real valued vector, g = g(ω) is complex valued and one should write g
iω in place of g in the case of H . The 

evaluation of (11) is done in such a way that the quantity in square brackets is calculated first and then it is multiplied 
by v T . This gives us the values of the secondary electric and magnetic fields at a receiver location, this is sufficient for 
calculation of the MT response.

In the inversion of the MT data one seeks a conductivity model that fits the measured data. One of the ways to find 
it is to use the Gauss–Newton algorithm (see for example [26]) to minimize the functional that consists of a data misfit 
term and a regularization term. In order to use this algorithm one needs the Jacobian J of the response functional. Let the 
domain be split into Nm inversion cells C j , which form a partition of the subsurface part of the domain (see Fig. 1). We 
assume that each cell consists of a number of finite elements and the conductivity σ is constant in each cell. Let σ j denote 
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Fig. 1. A central part of a cross-section of an example domain � with the earth’s subsurface in green and the air in white. Finite element mesh is plotted 
in gray, while the boundaries of inversion cells are plotted with a dashed black line. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

the value of the conductivity in an inversion cell C j . The conductivity in the whole earth’s subsurface is given by the vector 
of conductivities (σ j)

Nm
j=1. Each entry of the Jacobian matrix J consists of values of the derivative of the magnetotelluric 

response Z , K at some receiver location r with respect to σ j , for some r and some j = 1, . . . , Nm . The response is a function 
of the secondary electromagnetic field E, H , so its derivative with respect to σ j may be calculated using the chain rule, if 
the derivatives

∂ E

∂σ j
,

∂ H

∂σ j

are found. In order to find the latter, one has to evaluate the derivative of expression (11):

∂
∂σ j

(
v T
(
( Ã + iω B̃)−1 g

))
= v T

∂
(
( Ã+iω B̃)−1 g

)
∂σ j

= v T
(

∂( Ã+iω B̃)−1

∂σ j
g + ( Ã + iω B̃)−1 ∂ g

∂σ j

)
= v T

(
−( Ã + iω B̃)−1 ∂( Ã+iω B̃)

∂σ j
( Ã + iω B̃)−1 g + ( Ã + iω B̃)−1 ∂ g

∂σ j

)
= v T

(
−( Ã + iω B̃)−1 ∂iω B̃

∂σ j
ξ + ( Ã + iω B̃)−1 ∂ g

∂σ j

)
= v T

(
( Ã + iω B̃)−1

(
− ∂iω B̃

∂σ j
ξ + ∂ g

∂σ j

))
=
(

v T ( Ã + iω B̃)−1
)(

− ∂iω B̃
∂σ j

ξ + ∂ g
∂σ j

)
=
[
( Ã + iω B̃)−1 v

]T (− ∂iω B̃
∂σ j

ξ + ∂ g
∂σ j

)

(12)

where ξ and g should be replaced by ξ
iω and g

iω in the case of H . In the last calculation, the expression in square brack-

ets is evaluated first and then it is multiplied by 
(
− ∂iω B̃

∂σ j
ξ + ∂ g

∂σ j

)
for each σ j . Notice that one has to find ξ before the 

multiplication is done and that both the matrix ∂iω B̃
∂σ j

and the vector ∂ g
∂σ j

are sparse.

Jacobian entries are smooth functions of frequency, so they may be efficiently interpolated between frequencies. In Fig. 2
we present as an example, an element of the Jacobian matrix related to Kzx , plotted in the complex plane as the frequency 
is changed. One can see that the Jacobian entries may be complicated functions of frequency. In this case the piecewise 
linear or a high order polynomial interpolation is not accurate enough. The rational interpolation through the model order 
reduction, which is the topic of this paper, gives a more accurate approximation.

2.2. The model order reduction

Values of the E, H fields (11) and the Jacobian (12) may be approximated in such a way, that the vectors in square 
brackets in (11), (12) are approximated first, and then they are multiplied by the remaining part of expressions (11) or (12). 
Thus in both cases we are interested in an approximation of the expression

h̃(s) = ( Ã + sB̃)−1b̃ (13)

Here the shift s = iω for some chosen finite number of frequencies ω at which the MT measurements are taken. Those 
frequencies are usually log-uniformly distributed in an interval [ωmin, ωmax]. In the case of (11), b̃ = g(ω), so it is dependent 
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Fig. 2. Derivative of Kzx in the complex plane for the model considered in section 4 for 31 frequencies log-uniformly distributed in the interval 
[1 Hz, 1000 Hz]. True values are shown together with the high order polynomial, piecewise linear and model order reduction interpolation. Every third 
value (shown by green circles) is used as an interpolation point. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

on s and complex valued. In the case of (12), b̃ = v , so it is not dependent on s and real valued. Matrix Ã, defined by (5)
is real valued, symmetric, nonnegative definite, with a significant null space. We assume that the conductivity σ > 0, so 
matrix B̃ , defined in (5) is real valued, symmetric, positive definite. In this paper we consider the interpolation of the 
Jacobian, when b̃ does not depend on s. For the approximation of the forward response, given by (11), see [24].

We will construct an approximation of (13) using the model order reduction method [9,38,22,7,35,37,19,2,13,15,16].
Let us start with an equation satisfied by h̃:

( Ã + sB̃)h̃ = b̃ (14)

Consider Ṽ , which is an N × n matrix whose columns span the space

colsp(Ṽ ) = span
{
( Ã + s1 B̃)−1b̃, ( Ã + s2 B̃)−1b̃, . . . , ( Ã + sn B̃)−1b̃

}
(15)

for some chosen complex values s1, . . . , sn , which satisfy

si �= s j if i �= j (16)

As Ã is nonnegative definite and B̃ is positive definite, eigenvalues of B̃−1/2 Ã B̃−1/2 are in [0, ∞). Thus, in order for the 
equation (13) to have a solution, we assume that

s, s j /∈ (−∞,0] (17)

Let β ∈ C
n be such that the approximation of the solution of (14) in colsp(Ṽ ) is given by h̃Ṽ = Ṽ β . Making the residual 

orthogonal to colsp(Ṽ ), we obtain an equation for β:

Ṽ ∗( Ã + sB̃)(Ṽ β) = Ṽ ∗b̃ (18)

where ∗ denotes Hermitian conjugation. If this equation has a unique solution (see Theorem 2.1), then we obtain the 
approximation hṼ (s) = Ṽ β to h(s):

h̃Ṽ (s) = Ṽ
(

Ṽ ∗( Ã + sB̃)Ṽ
)−1

Ṽ ∗b̃ (19)

We assume that n 	 N , so equation (18) is much easier to solve than equation (14). In the simplest case, s j = iω j , for 
ω j ∈ [ωmin, ωmax]. In this case ω1, . . . , ωn may be called interpolating frequencies, and s1, . . . , sn may be called interpolating 
shifts as the following theorem holds:

Theorem 2.1. If the matrix Ṽ satisfying (15) is full rank, then for s ∈C, the solution to (18) exists and is unique. Moreover,

h̃Ṽ (s j) = h̃(s j), j = 1, . . . ,n (20)

Proof. First we show that the matrix in equation (18) is not singular. Indeed

Ṽ ∗( Ã + sB̃)Ṽ = Ṽ ∗ Ã Ṽ + sṼ ∗ B̃ Ṽ = A1 + sB1
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As Ṽ is full rank and Ã is symmetric nonnegative definite, A1 is hermitian, nonnegative definite. Similarly as B̃ is symmetric 
positive definite, B1 is hermitian positive definite. Thus the matrix may be written as:

A1 + sB1 = B
1
2
1

(
B

− 1
2

1 A1 B
− 1

2
1 + sI

)
B

1
2
1

with B1/2
1 symmetric, invertible. Matrix B−1/2

1 A1 B−1/2
1 is hermitian, nonnegative definite, so it has real, nonnegative eigen-

values a1, . . . , an . As a result, the eigenvalues of the matrix (B−1/2
1 A1 B−1/2

1 + sI) are a1 + s, . . . , an + s. With the assumption 
(17), that s /∈ (−∞, 0], none of the eigenvalues ai + s can be equal to zero, thus matrix (B−1/2

1 A1 B−1/2
1 + sI) is invertible 

and so is A1 + sB1 as a product of invertible matrices. We have proven that (18) has a unique solution.
Next notice that because of (15), for each j, there is β j such that Ṽ β j = ( Ã + s j B̃)−1b̃. Thus β j satisfies (18) for s = s j . 

This implies

h̃Ṽ (s j) = Ṽ β j = ( Ã + s j B̃)−1b̃ = h̃(s j) � (21)

2.3. A relationship with (A + sI)−1b

Let us relate our problem to the situation when B̃ is an identity matrix I . If we define

A = B̃− 1
2 Ã B̃− 1

2 , b = B̃− 1
2 b̃, h(s) = (A + sI)−1b (22)

we can rewrite h̃(s) as

h̃(s) = ( Ã + sB̃)−1b̃ = B̃− 1
2 (A + sI)−1b = B̃− 1

2 h(s) (23)

Moreover, if we define the matrix V as V = B̃1/2 Ṽ , then

colsp(V ) = span
{
(A + s1 I)−1b, (A + s2 I)−1b, . . . , (A + sn I)−1b

}
(24)

Notice that a particular form of Ṽ does not matter, as long as (15) is satisfied. So to make the presentation easier, we will 
assume that the columns of V are orthonormal. With this assumption we obtain

Ṽ ∗ Ã Ṽ = V ∗ AV , Ṽ ∗ B̃ Ṽ = V ∗V = I (25)

and

h̃Ṽ (s) = Ṽ
(

Ṽ ∗( Ã + sB̃)Ṽ
)−1

Ṽ ∗b̃ = B̃− 1
2 V
(

V ∗(A + sI)V
)−1

V ∗b = B̃− 1
2 hV (s) (26)

Combining (23) and (26) together allows us to relate the error of the approximation of h̃(s) to the error of the approximation 
of h(s):

h̃(s) − h̃Ṽ (s) = B̃− 1
2 (h(s) − hV (s)) (27)

Consider a diagonalization of A:

A = U	U∗ (28)

where 	 is a diagonal matrix with eigenvalues λk as entries and the columns of U are eigenvectors uk . With this notation, 
each element of vector h(s) is a rational function of the shift s:

h(s) = (A + sI)−1b =
N∑

k=1

uk(u∗
kb)

λk + s
(29)

This rational vector function is approximated by hV (s):

hV (s) = V
(

V ∗ AV + sI
)−1

V ∗b =
n∑

j=1

V γ j(γ
∗
j V ∗b)

λ̂ j + s
(30)

where λ̂ j and γ j are eigenvalues and eigenvectors of V ∗ AV (with the assumption that V ∗V = I). Notice that hV is analytic, 
but not entire. It has many poles. For such a function, the Laurent series may exist outside the Taylor series circle of con-
vergence. As a result, the approximation of such a function by a rational function could be more accurate than a polynomial 
approximation. Extensive theory of the rational Pade approximation of an analytic function may be found in [3].

Intuitively the approximation (30) will be good if λ̂ j , V γ j , j = 1, . . . , n approximate λk , uk , k = 1, . . . , N for k such that 
u∗

k b �= 0. Yet the quality of this approximation depends on the choice of V , which in turn depends on the choice of the 
interpolating shifts (s j)

n
j=1. We will discuss algorithms that are able to choose (s j)

n
j=1 to adapt to the part of the spectrum 

of A for which u∗b �= 0.
k
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2.4. Analysis

In this section we present some mathematical theory related to the rational approximation of the transfer function hV
using rational Krylov subspaces.

Since for any vector z and any s1, s2,

A(A + s1 I)−1(A + s2 I)−1z + s1(A + s1 I)−1(A + s2 I)−1z = (A + s2 I)−1z (31)

using assumption (16), it can be shown that the space (24) may be written as a Krylov subspace [22]:

colsp(V ) = span
{

q, Aq, . . . , An−1q
}

, q =
⎛
⎝ n∏

j=1

(A + s j I)−1

⎞
⎠b (32)

Define a space U(b) as:

U(b) = span{uk : u∗
kb �= 0} (33)

Assume that the basis (uk)
N
k=1 is chosen in such a way that the eigenvalues corresponding to vectors uk in (33) are distinct. If 

for a particular eigenvalue λ the dimension of the subspace span{uk : λk = λ} is more than 1, one can rotate the eigenvectors 
forming a basis of this subspace, so that only one of them (normalized projection of b onto this subspace) is not orthogonal 
to b.

With this notation we can formulate and prove the following theorem:

Theorem 2.2. If (16) is satisfied and the dimension of U(b) is greater than or equal to n, then V is full rank.

Proof. Assume that V is not full rank and take a linear combination of columns of V and assume that it is 0. Using the 
representation (32), there is a polynomial p of the order ≤ n − 1 such that

0 = p(A)q

Using diagonalization (28) and the definition of q in (32), we obtain:

0 = p(A)q = Up(	)U∗q = Up(	)

⎛
⎝ n∏

j=1

(	 + s j I)−1

⎞
⎠U∗b

From the latter, as the columns of U are linearly independent, we can conclude that for each k = 1, . . . , N we have

0 = p(λk)∏n
j=1(λk + s j)

u∗
kb

so for each k = 1, . . . , N

0 = p(λk)∏n
j=1(λk + s j)

or 0 = u∗
kb

Given the assumption, the number of distinct λk such that u∗
k b �= 0 is greater than or equal to n, we obtain that the 

polynomial p has at least n distinct roots. As p is of order not greater than n − 1, it has to be identically zero:

p ≡ 0

This proves that V is full rank. �
Notice that the assumption in Theorem 2.2 is true in most practical applications. If the number of distinct eigenvalues λk

is greater than or equal to n, the assumption not satisfied is equivalent for b to be in one of a finite number of subspaces of 
C

N . Each of the subspaces has a Lebesgue measure 0, so if b is chosen randomly with the probability distribution absolutely 
continuous with respect to the Lebesgue measure, the probability of the assumption not being satisfied is 0.

Moreover the following theorem is true.

Theorem 2.3. If s1, . . . , sn satisfy (16) and the space U(b) defined in (33) has dimension n, then the approximation hV (s) to h(s) is 
exact for any s.

Remark. Notice that with the assumptions, given in Theorem 2.2, V is full rank and thus the approximation hV (s) is defined. 
Adding any additional vector will make the assumptions of Theorem 2.2 fail and thus will make the corresponding V rank 
deficient. Yet at this point, we do not need to add any vectors as the approximation is already exact. Thus failure to satisfy 
the assumption of Theorem 2.2 is a lucky failure.
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Proof. Given (29), for any s, we have h(s) ∈ U(b), so using (24), the definition of V , we have colsp(V ) ⊂ U(b). Moreover,

dim(colsp(V )) = rank(V ) = n = dim(U(b))

thus

colsp(V ) = U(b)

This implies that for any s, h(s) ∈ colsp(V ), so there exists βs such that h(s) = V βs given uniqueness of solution to (18) (see 
Theorem 2.1). Hence

hV (s) = h(s) �
Next, we will follow [22] to present an interesting interpretation of the approximation hV (s) to h(s), which allows us to 

derive the error of the approximation.
Define a space of rational functions:

V =
{

p(λ)∏n
j=1(λ + s j)

: p is a polynomial of the order ≤ n − 1

}
(34)

For any diagonal matrix 	 = diag(λ1, . . . , λN) and for g ∈ V we will write

g(	) = diag(g(λ1), . . . , g(λN)) (35)

One could expand the domain of g to any hermitian matrix A.
Notice, that every vector x ∈ colsp(V ), using (32), may be written as

x = U g(	)U∗b, g ∈ V (36)

One may write an equation for hV as:

(V α)∗(A + sI)hV (s) = (V α)∗b (37)

for all α ∈R
n . Since hV (s) ∈ colsp(V ), from (36) one can conclude that there is f ∈ V such that

U f (	)U∗b = hV (s) = V
(

V ∗(A + sI)V
)−1

V ∗b

Similarly each V α ∈ colsp(V ), so it may be represented as V α = U g(	)U∗b for some g ∈ V . Using those representations, 
one can rewrite (37) as

(U g(	)U∗b)∗(A + sI)(U f (	)U∗b) = (U g(	)U∗b)∗b

for all g ∈ V . The latter may be rewritten as

b∗U g(	)(	 + sI) f (	)U∗b = b∗U g(	)U∗b∑N
k=1 g(λk)(λk + s) f (λk)|u∗

kb|2 =∑N
k=1 g(λk)|u∗

kb|2
The last equation may be presented as

〈(λ + s) f − 1, g〉μ = 0 ∀g ∈ V (38)

where the measure μ is defined on the spectrum of A (which is a subset of [0, ∞)) as a linear combination of delta 
measures:

μ =
N∑

k=1

|u∗
kb|2δ(λ=λk) (39)

Notice that for each value of shift s, there is a different f ∈ V . We will indicate this dependence by writing f (λ, s).

Theorem 2.4. If the dimension of U(b) is greater than or equal to n, then f ∈ V satisfying (38) approximates 1
λ+s with a relative error

f (λ, s) − 1
λ+s

1
λ+s

= (λ + s) f (λ, s) − 1 = −
n∏

j=1

(s − s j)(λ − λ̂ j)

(λ + s j)(s + λ̂ j)
(40)

where λ̂ j , j = 1, . . . , n are eigenvalues of V ∗ AV , where V is chosen in such a way that V ∗V = I .

The proof, different from the one in [22], is given in Appendix A.



M. Kordy et al. / Applied Numerical Mathematics 109 (2016) 1–18 9
Fig. 3. Complex plane, which is a domain of h, is shown. The interval over which the values of h are needed is {iω : ω ∈ [ωmin, ωmax]} (shown in red). 
The interval of the effective spectrum of A is {λmin, λmax} (shown in blue). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

3. Numerical algorithms

3.1. Part of the norm of the residual as an error indicator

In this section, we present the algorithms for choosing the interpolating shifts s j . We will consider the values of the 
shifts in an interval I in the complex plane. I may be a purely imaginary interval I = {s = iω : ω ∈ [ωmin, ωmax]}, or a 
purely real interval I = [λmin, λmax]. Both intervals are presented in Fig. 3. Considering that we need to evaluate the transfer 
function in the purely imaginary interval, the best choice of shifts would be such that minimizes the maximum relative 
error of approximation:

mins1,...,sn∈I maxω∈[ωmin,ωmax]
‖h̃(iω) − h̃Ṽ (iω)‖2

‖h̃(iω)‖2
(41)

Notice that the choice of s1, . . . , sn determines Ṽ , which determines the approximation h̃Ṽ . Such an approach is not pursued 
in this paper for two reasons. Firstly because the true relative error of approximation is not known, so we have to use an 
error indicator e(s1,...,sn)(iω). Secondly, if (41) was used, the n optimal shifts would most likely not appear among the n + 1
optimal shifts.

Because of that we consider an approach in which at each iteration, given (s1, . . . , sn), we will add one value sn+1 in 
order to form (s1, . . . , sn, sn+1). We use the fact that at each interpolation shift s j , the interpolation is exact, so the error 
of approximation is 0, thus the value of the next interpolation shift sn+1 is chosen as the maximum of the error indicator 
function in the interval I:

sn+1 = argmaxs∈I e(s1,...,sn)(s) (42)

In such a way, we set the error to 0 at the location that needs that the most, the location at which the error is the largest.
The error indicator that we use has been introduced in [7]. Using Theorem 2.4 one can show that it is equivalent to an 

arbitrary seminorm of the residual. This statement is expressed in the following theorem.

Theorem 3.1. Let ‖.‖ denote an arbitrary seminorm. The seminorm of the residual as a function of s may be expressed as

‖(A + sI)hV (s) − b‖ (s) =
∣∣∣∣∣∣

n∏
j=1

s − s j

s + λ̂ j

∣∣∣∣∣∣C
where C is a constant dependent on the seminorm.

Proof. Using the relative error (40) one can rewrite the residual as:

R = (A + sI)hV (s) − b = (A + sI)(hV (s) − h(s)) = U ((	 + sI) f (	, s) − I)U∗b

= −
[∏n

j=1
s−s j

s+λ̂ j

][
U
(∏n

j=1(	 − λ̂ j I)
∏n

j=1(	 + s j I)−1
)

U∗b
]

= Rs(s)R V
(43)

The quantity above is split into two parts. The first part, Rs , is a scalar, the second, R V , is a vector. Notice that Rs is 
dependent on s and R v is not.

‖R‖ = ‖Rs(s)R V ‖ = |Rs(s)| ‖R v‖ =
∣∣∣∣∣∣

n∏
j=1

s − s j

s + λ̂ j

∣∣∣∣∣∣C (44)

where C = ‖R v‖ does not depend on s. �
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Remark.

• Theorem 3.1 justifies the use of the following error indicator

e(s) =
∣∣∣∣∣∣

n∏
j=1

s − s j

s + λ̂ j

∣∣∣∣∣∣ (45)

where s1, . . . , sn are shifts chosen so far and λ̂1, . . . , ̂λn are eigenvalues of V ∗ AV with the assumption V ∗V = I .
• The theorem says that one can use any seminorm of the residual as an error indicator and the result would be the 

same. One could use the absolute value of a single entry of the residual. If the values are not equal to 0 for all shifts, 
then the new interpolating shift sn+1 would be the same as for (45).

• Authors of [7] noticed that once the interpolation shifts s j are fixed, the Ritz values λ̂ j minimize the norm of R V :∥∥∥∥∥∥U

⎛
⎝ n∏

j=1

(	 − λ̂ j I)
n∏

j=1

(	 + s j I)−1

⎞
⎠U∗b

∥∥∥∥∥∥
2

(46)

For the proof of this statement see Theorem in Appendix B.1. This property allows to conclude that if the above error 
indicator is used, both the new value of shift and the Ritz values are chosen in an optimal way to reduce the second 
norm of the residual.

Authors of [7] consider real valued shifts in the interval [λmin, λmax] where λmin, λmax > 0 are the smallest and the 
largest eigenvalues of A. The algorithm of [7] is presented below:

Algorithm ARR (Adaptive choice of Real shifts; the norm of the Residual used as the error indicator):

1. Set n = 2, choose s1 = λmin, s2 = λmax and set Ṽ = Ṽ 1:2 in such a way that

colsp(Ṽ 1:2) = span{( Ã + s1 B̃)−1b̃, ( Ã + s2 B̃)−1b̃}
and Ṽ ∗ B̃ Ṽ = I .

2. Find sn+1 as the maximizer of∣∣∣∣∣∣
n∏

j=1

s − s j

s + λ̂ j

∣∣∣∣∣∣ (47)

over s ∈ [λmin, λmax], where λ̂1, . . . , ̂λn are eigenvalues of Ṽ ∗ Ã Ṽ .
3. Set Ṽ =Ṽ 1:(n+1) in such a way that

colsp(Ṽ 1:(n+1)) = colsp(Ṽ 1:n) ⊕ span{( Ã + sn+1 B̃)−1b̃}
and Ṽ ∗ B̃ Ṽ = I .

4. If exit criteria met (the approximation is good enough), stop
5. Set n = n + 1 and jump to 2

The details of the update of Ṽ at step 3 are presented in section 3.2. Notice that according to (25), Ṽ ∗ Ã Ṽ = V ∗ AV , so those 
two matrices have the same eigenvalues.

This approach is valid for A symmetric positive definite or for b orthogonal to the null space of A (in this case λmin is 
the smallest of nonzero eigenvalues). The case when matrix A has a significant null space and b is not orthogonal to the 
null space is analyzed in depth in [24]. In the current paper, in such a case we just set λmin to be the smallest positive 
eigenvalue. The advantage of this approach is that at each iteration, to enlarge Ṽ , one needs to solve the linear system (14)
for a real s. In this case matrix Ã + sB̃ is real, symmetric positive definite and also b̃ is real, thus solving the linear system 
with iterative solvers is faster than in the complex case. One matrix vector multiplication is 4 times faster, and the total 
number of iterations is less as iterative methods for hermitian matrices (like Conjugate Gradient method) may be used.

Next we propose a similar algorithm, but for purely imaginary values of shifts s = iω, where the frequency is in an inter-
val of interest ω ∈ [ωmin, ωmax]. This is a natural approach for MT, as one needs the response for a number of frequencies 
log-uniformly distributed in a purely imaginary interval. Also if b̃ ∈R, ω ∈R then

h̃(iω) = ( Ã + iω B̃)−1b̃ = ( Ã − iω B̃)−1b̃ = h̃(−iω) (48)

so if one calculates h̃ at s = iω j , then one simultaneously gets the value of h̃ at s = −iω j . Hence with one interpolating 
frequency ω j , the dimension of colsp(Ṽ ) may be increased by 2, using h̃(iω j) and h̃(iω j). In this setting when at each 
iteration we add two shifts s = ±iω j , the squared norm of the first part of the residual (43) evaluated at s = iω is
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∣∣∣∣∣∣
2n∏
j=1

s − s j

s + λ̂ j

∣∣∣∣∣∣
2

=
∣∣∣∣∣
∏n

j=1(iω − iω j)(iω + iω j)∏2n
j=1(iω + λ̂ j)

∣∣∣∣∣
2

=
∏n

j=1(ω
2 − ω2

j )
2∏2n

j=1(ω
2 + λ̂2

j )
(49)

where λ̂ j ∈ R, j = 1, . . . , 2n are the eigenvalues of V ∗ AV = Ṽ ∗ Ã Ṽ . The resulting algorithm is presented below:

Algorithm AIR (Adaptive choice of Imaginary shifts, the norm of the Residual used as the error indicator):

1. Set n = 2, choose ω1 = ωmin, ω2 = ωmax and set Ṽ =Ṽ 1:4 in such a way that

colsp(Ṽ 1:4) = span
{
( Ã + iω B̃)−1b̃ : ω ∈ {ω1,−ω1,ω2,−ω2}

}
and Ṽ T B̃ Ṽ = I .

2. Find ωn+1 as the maximizer of∏n
j=1(ω

2 − ω2
j )

2∏2n
j=1(ω

2 + λ̂2
j )

(50)

over ω ∈ [ωmin, ωmax], where λ̂1, . . . , ̂λ2n are eigenvalues of Ṽ ∗ Ã Ṽ .
3. Set Ṽ =Ṽ 1:2(n+1) in such a way that

colsp(Ṽ 1:2(n+1)) = colsp(Ṽ 1:2n) ⊕ span{( Ã + iωn+1 B̃)−1b̃, ( Ã − iωn+1 B̃)−1b̃}
and Ṽ T B̃ Ṽ = I .

4. If exit criteria met (approximation is good enough), stop
5. Set n = n + 1 and jump to 2

In this algorithm the update 3 may be done in such a way that Ṽ is a real matrix. This saves some computational time (see 
section 3.2).

What seems to be an advantage over ARR algorithm is that one does not need to estimate λmin, λmax. Moreover, the 
approximation is tuned for the interval of interest [ωmin, ωmax].

3.2. The update of matrix Ṽ

Let vi denote the columns of Ṽ . We update V in such a way that the columns of Ṽ are orthonormal. If we need to add 
a vector u to the column space Ṽ , we orthogonalize it according to the algorithm:

vn+1 = u

for ( j = 1 : n){
vn+1 = vn+1 − (vn+1, v j)v j

}
vn+1 = vn+1

‖vn+1‖2

(51)

In the case of ARR algorithm, the vector to be added is

u = h̃(s) = ( Ã + sB̃)−1b̃

for some real s. As a result u ∈R
N and the matrix V is real.

In the case of AIR algorithm when b̃ ∈R, for some ω, instead of adding h̃(iω) and its complex conjugate h̃(iω) = h̃(−iω), 
we add its real and imaginary parts Re(h̃(iω)), Im(h̃(iω)). The latter two vectors span the same two dimensional space as 
h̃(iω), h̃(iω), yet they are real valued and as a result, the matrix V is real valued. This allows for computational savings 
whenever columns of Ṽ have to be multiplied by matrices Ã, B̃ or when inner products have to be calculated.

3.3. A note on numerical precision

To use the error indicator (45) one has to calculate the entries of the matrix Ṽ ∗ Ã Ṽ and then calculate its eigenvalues. We 
tested the numerical accuracy by comparing the values of (45) to relative residual norm and for all considered calculations 
the accuracy was sufficient. To visualize our test, we present a comparison of the error indicator and the relative residual 
norm for AIR algorithm at iteration n = 23 in Fig. 4.

In order to be able to get a good approximation across a range of frequencies, one needs to use a good solver to compute 
an accurate value of h̃(iω) for a particular frequency. The solver needs to work well also for low frequencies. In our case, 
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Fig. 4. The relative residual norm calculated at the iteration n = 23 of algorithm AIR, compared with the error indicator 45 multiplied by a constant chosen 
in such a way that the two match. We present the case of b̃ for the Jacobian of Hx evaluated at a receiver position described in section 4.

we use a direct solver for a linear system and we use a carefully implemented divergence correction (see [25]). Even though 
the direct solver, together with the divergence correction is used, for low frequencies it didn’t allow us to obtain a solution 
of the linear system with the relative residual less than 10−10, which is larger than the machine precision. What is more 
encouraging, though, is the fact that even though a parallelized solver is used (which introduced some randomness in the 
obtained solution due to random calculation order), for all frequencies the solution obtained in two different runs of the 
code differ by a relative error almost as small as the machine precision. The latter would not be true if the divergence 
correction was not used.

In order to evaluate the approximation h̃Ṽ (s) for a given shift value s, one needs to evaluate:

h̃Ṽ (s) = Ṽ (Ṽ ∗ Ã Ṽ + sṼ ∗ B̃ Ṽ )−1 Ṽ ∗b̃ (52)

In order to make the columns of matrix Ṽ B̃-orthogonal (see section 3.2), due to insufficient numerical precision, multiple 
reorthogonalizations are needed to allow replacing matrix Ṽ ∗ B̃ Ṽ in (52) with the identity matrix. Alternatively one could 
evaluate matrix Ṽ ∗ B̃ Ṽ and use it. This allows to obtain a better approximation h̃Ṽ (s) of h̃(s).

Moreover, this approximation will fail to reduce the approximation error below some level. If a better approximation is 
needed, for some of the calculations one can use the quadruple precision, which is only 4 times slower than the double 
precision on modern machines [20] or the double–double precision [21] if quadruple precision on the machine used is 
slow. In our implementation, higher precision is used to evaluate inner products between columns of Ṽ and columns of 
Ã Ṽ to obtain Ṽ ∗( Ã Ṽ ). In this case the inner product is evaluated in such a way that the input vectors are in double 
precision and only the calculation is done in the higher precision, thus only the CPU calculations are slower, reading from 
RAM memory is not. An example code in Fortran showing precisely what we mean is presented in Appendix C. A similar 
approach is used to evaluate Ṽ ∗ B̃ Ṽ . Once those matrices are evaluated, they are stored in higher precision and added to 
form matrix Ṽ ∗ Ã Ṽ + iωṼ ∗ B̃ Ṽ , which is a very small matrix with the number of columns and rows not exceeding 100 in 
our numerical examples. The application of the inverse of this matrix to Ṽ ∗b̃ is also performed in the higher precision. 
The resulting vector is converted to double precision and multiplied by the matrix Ṽ to obtain h̃Ṽ (s). As we show in the 
numerical experiments, this allows to reduce the level of stagnation of AIR algorithm by two orders of magnitude. It does 
not affect the stagnation level of ARR. And as only some of the calculations are done in higher precision, for low rank of Ṽ , 
the additional computational time will be insignificant compared with the time of solution of the linear system for a single 
value of shift.

4. Numerical results

Although the proposed methods are designed primarily for iterative solvers, in order to test the algorithms, we use 
the forward solver of [25]. We consider a model with a 3d hill and a 3d valley, presented in Fig. 5. Below the surface 
there is a conductive (1 � m) object in 50 � m background. The conductive object is placed at [−700 m, 700 m] ×
[−328.3 m, 328.3 m] in XY plane and extends from on average 450 m to 1153 m depth. The air is approximated by 
107 � m and the term iωε is dropped completely in all of the domain. In the numerical tests we consider magnetotelluric 
response Z , K at one receiver location at the bottom of the valley, marked by a blue dot in Fig. 5. We are interested in the 
response h̃(iω) for a range of frequencies considered in magnetotellurics ω

2π ∈ [0.01 Hz, 1000 Hz]. YZ cross-section plotted 
in Fig. 5, shows the location of the object. The hexahedral mesh consists of 31, 31 and 25 elements in x, y and z directions 
respectively and it extends to 45 km from the center in x and y directions. In z direction the mesh extends to 32 km above 
the surface and 47 km deep. The number of columns (and rows) of the system matrix is equal to 67,140.

To visualize the iterations of the algorithms, in Fig. 6 we show the relative error of approximation and the error indicator 
used as a function of frequency ω for three consecutive iterations of the AIR algorithm. This figure presents how the 
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Fig. 5. The central part of the surface mesh, together with the location of the receiver shown by a blue dot (left); The central part of the YZ cross-section 
at x = 0 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Three consecutive iterations of AIR algorithm. We present the case of b related to the Jacobian of Hx . The error indicator is shown in blue, the true 
relative error is shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

new interpolating frequency ω j is chosen at a location of the maximum of the error indicator and also how the error of 
approximation is reduced in consecutive iterations. It also shows that the error indicator we use tends to focus more on 
high frequencies.

Recollect that b̃ = v for v defined in (9) and (10) for the electric field E and the magnetic field H respectively. We 
consider v for E corresponding to x and y directions and H corresponding to x, y and z directions.

To compare the algorithms we calculate the maximum relative error of an approximation

max
ω∈[ωmin,ωmax]

‖h̃Ṽ (iω) − h̃(iω)‖2

‖h̃(iω)‖2
(53)

We also consider the maximum relative residual norm:

max
ω∈[ωmin,ωmax]

‖( Ã + iω B̃)h̃Ṽ (iω) − b̃‖2

‖b̃‖2
(54)

First, consider the case of the magnetic field H . In Fig. 7, we compare AIR and ARR algorithms for two cases of the 
rhs b̃ corresponding to the Jacobian of Hx and Hz . One can see that with the same dimension of the Krylov subspace AIR 
algorithm approximation is better than the approximation using ARR algorithm. Moreover, ARR algorithm stagnates once it 
reaches the level of the maximum relative error of 10−8, whereas AIR algorithm allows to reduce the maximum relative 
error to a level two orders of magnitude less. Further, if some of the calculations of AIR algorithm (see section 3.3) are 
done in quadruple precision, one could reduce the max relative error another two orders of magnitude. The stagnation 
of the ARR algorithm might be explained by a need to do an analytic continuation of the values of a function on purely 
real interval of shifts, to a purely imaginary interval of shifts (see Remark 5 in [10]). This is confirmed by our experience 
that even if some of the calculations of ARR algorithm are done in quadruple precision the stagnation occurs at the same 
level.
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Fig. 7. The relative error of approximation and the relative residual norm as a function of the dimension of the Krylov subspace for AIR and ARR algorithms. 
Notice each iteration of AIR increases the dimension by two and each iteration of ARR increases the dimension by 1. “AIR; quad” stands for AIR algorithm, 
for which some of the calculations are done in quadruple precision. Two cases are presented: b related to the Jacobian of Hx and Hz .

On the horizontal axis of the figure, we show the dimension of the Krylov subspace used to approximate the solution. 
For ARR algorithm it is equal to the iteration number n, yet for AIR algorithm it is two times larger than n. One iteration of 
each of the algorithms requires a single solution of the linear system, yet in the case of ARR everything is real valued, so 
the solution time is at least 4 times less. To account for that in Fig. 8 we present a similar plot, but with the horizontal axis 
representing the computational time. Such a comparison shows that before ARR algorithm stagnates, it is able to reduce the 
approximation error about 1.5 faster than AIR algorithm. Another advantage of ARR is that the values of the max relative 
residual norm are close to the values of the max relative error, which allows to use the max relative residual norm as a 
good guess of the max relative error. For AIR the max relative residual norm is usually less then the max relative error. The 
tests for b related to the Jacobian of the electric field show similar performance of the considered algorithms.

A significant and sometimes dominant computational cost at each iteration of Gauss–Newton method is due to the 
calculation of the Jacobian. If the same mesh is used for all receivers, one needs two solves to obtain two vectors ξ (one 
for each plane wave polarization) that are needed in the forward problem calculation (11) and subsequently as much as 
5 times the number of receivers solves to obtain the Jacobian in (12). With 100 MT receivers in the domain, one needs 500
solves to calculate the Jacobian and only 2 solves for the forward response.

To estimate the speedup of the calculation of the Jacobian, we assume that an iterative solver used to solve the linear 
systems has a property that the speed of reducing the log of the relative residual norm does not depend on the value of 
the relative residual norm, i.e. the same number of iterations is needed to reduce the relative residual norm from 10−1

to 10−2 as is needed to reduce the relative residual norm from 10−5 to 10−6. It is true for solvers that use multigrid 
techniques, divergence correction, and if the mesh does not have high aspect ratio elements [29,23]. Suppose further that 
the approximation h̃Ṽ (iω) is used in place of h̃(iω) if it has sufficiently small residual and if not, it is used as a starting 
guess for the iterative solver. Assume that the cost of applying the model reduction techniques is negligible compared to 
the cost of calculating h̃(s) = ( Ã + sB̃)−1b̃ for one s using an iterative solver. Our numerical tests show that the speedup of 
using AIR versus not using the model order reduction is 4 times in the case of approximations of h̃(iω) at 30 frequencies 
with the relative residual norm less than 10−7. The speedup gets higher if values of h̃(iω) for more frequencies are needed. 
For example for 60 frequencies, the speedup would be 8 times.
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Fig. 8. A plot similar to Fig. 7, but an estimate of the computational time is presented on the horizontal axis. The estimate takes into consideration the fact 
that the calculations for real numbers are 4 times faster than for complex numbers. Only the max relative error of approximation is plotted for the case of 
b related to the Jacobian of H − x.

5. Conclusions

For many inverse problems solved using a method (like Gauss–Newton) requiring a Jacobian, significant and sometimes 
dominant computational cost is related to its calculation. We developed a method to significantly speed up the calculations 
of the Jacobian using model order reduction interpolation based on Pade approximation and rational Krylov subspaces.
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Appendix A. Proof of Theorem 2.4

Proof. Let λ̂ j , γ j be the eigenvalues and the eigenvectors of V ∗ AV . As V ∗ AV is hermitian, nonnegative definite, the eigen-
values are nonnegative:

λ̂ j ≥ 0, j = 1, . . . ,n (A.1)

and γ j might be chosen to be orthonormal. Using representation (36), define z j ∈ V such that

V γ j = U z j(	)U∗b (A.2)

Consider an operator of multiplication by λ acting on the linear space V . We show that z j are μ orthonormal eigenvectors 
of this operator:

δ(i = j) = γ ∗
i γ j = γ ∗

i V ∗V γ j = (V γi)
∗(V γ j) = (U zi(	)U∗b)∗U z j(	)U∗b = 〈z j, zi〉μ (A.3)

λ̂ j〈z j, zi〉μ = λ̂ jγ
∗
i γ j = γ ∗

i (λ̂ jγ j) = γ ∗
i (V ∗ AV γ j) = (V γi)

∗ A(V γ j) = 〈λz j, zi〉μ (A.4)

Using the latter and (38) one can calculate the coefficients of f in eigendirections z j to obtain:

f (λ, s) =
n∑

j=1

〈1, z j〉μ
λ̂ j + s

z j(λ) (A.5)

Using the definition (34) of V , we introduce p j as a polynomial of the order at most n − 1 such that

z j(λ) = p j(λ)∏n
i=1(λ + si)

(A.6)

This allows us to rewrite (A.5) as

f (λ, s) =
n∑

j=1

(
〈1, z j〉μ
λ̂ j + s

p j(λ)∏n
i=1(λ + si)

)
= p(λ, s)∏n

j=1(λ̂ j + s)(λ + s j)
(A.7)

for some p, which is a polynomial of the order at most n − 1 with respect to λ as well as with respect to s. Define
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f̌ (λ, s) = 1

λ + s

⎡
⎣1 −

n∏
j=1

(s − s j)(λ − λ̂ j)

(λ + s j)(s + λ̂ j)

⎤
⎦=
∏n

j=1(λ + s j)(s + λ̂ j) −∏n
j=1(s − s j)(λ − λ̂ j)

(λ + s)
∏n

j=1(λ + s j)(s + λ̂ j)

Following [30], we notice that if we plug in −s for λ then the numerator is 0. Thus the polynomial in the numerator is 
divisible by (λ + s). This allows us to write f̌ as

f̌ (λ, s) = p̌(λ, s)∏n
j=1(λ̂ j + s)(λ + s j)

where p̌ is a polynomial of the order at most n − 1 of s and of λ. In order to prove Theorem 2.4 it remains to show that 
p = p̌.

Define

ȟV (s) = U f̌ (	, s)U∗b (A.8)

Using (20) and (27), and the definition of f̌ , we have

hV (s) = ȟV (s), for s = s j, j = 1, . . . ,n

U f (	, s)U∗b = U f̌ (	, s)U∗b, for s = s j, j = 1, . . . ,n

f (	, s)U∗b = f̌ (	, s)U∗b, for s = s j, j = 1, . . . ,n

f (λk, s)u∗
kb = f̌ (λk, s)u∗

kb, for s = s j, j = 1, . . . ,n, k = 1, . . . , N

Let us now fix λk . Assuming u∗
k b �= 0, we have

p(λk, s)∏n
i=1(λ̂i + s)(λk + si)

= p̌(λk, s)∏n
i=1(λ̂i + s)(λk + si)

, for s = s j, j = 1, . . . ,n

As λk, ̂λi ≥ 0, with the assumption (17), we can conclude that

p(λk, s) = p̌(λk, s), for s = s j, j = 1, . . . ,n

p(λk, s) − p̌(λk, s) = 0, for s = s j, j = 1, . . . ,n

p(λk, s) − p̌(λk, s) is a polynomial of the order at most n − 1. As it has n distinct roots, it has to be equal to 0. We have 
obtained:

u∗
kb �= 0 ⇒ ∀s p(λk, s) = p̌(λk, s)

Now, fix s, then p(λ, s) − p̌(λ, s) is a polynomial of λ of the order at most n − 1. The assumption that the dimension of 
U(b) is greater than or equal to n implies that number of distinct λk such that u∗

k b �= 0 is greater than or equal to n, so the 
polynomial has at least n distinct roots, thus it is equal to 0. We have obtained that

p(λ, s) = p̌(λ, s), ∀λ, s

which implies

f (λ, s) = f̌ (λ, s), ∀λ, s

which in turn implies (40). �
Appendix B. Minimizing property of Ritz values

Theorem Appendix B.1. For any values s j /∈ (−∞, 0], the eigenvalues λ̂ j of V ∗ AV minimize the norm (46).

Proof. The square of the norm may be rewritten as∥∥∥U
(∏n

j=1(	 − λ̂ j I)
∏n

j=1(	 + s j I)−1
)

U∗b
∥∥∥2

2

= ∫∞
0

∣∣∣∏n
j=1(λ − λ̂ j)

∣∣∣2 ∣∣∣∏n
j=1(λ − s j)

∣∣∣−2
μ(dλ)

= ∫∞
0

∏n
j=1(λ − λ̂ j)

2dτ (λ) = ‖π̃n‖2
τ

(B.1)

where the measure τ is defined as
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dτ (λ) =
∣∣∣∣∣∣

n∏
j=1

(λ − s j)

∣∣∣∣∣∣
−2

μ(dλ) (B.2)

and the polynomial π̃n is

π̃n(λ) =
n∏

j=1

(λ − λ̂ j) (B.3)

The expression (A.4) for eigenvalues λ̂ j and eigenvectors z j , defined in (A.2) may be written using the measure τ as

〈(λ − λ̂ j)p j, pi〉τ = 0 (B.4)

for all i, j = 1, . . . , n. Polynomial p j has been defined by (A.6). Consider a polynomial πn(λ) of the order n, which is τ
orthogonal to all the polynomials of the order at most n − 1. If the measure τ has support consisting of at least n points 
(which is true if the number of distinct eigenvalues λk for which u∗

kb �= 0, is at least n) then πn has n distinct zeros. This is 
a standard result of the theory of orthogonal polynomials, the proof is not given here. According to (B.4), we have

πn(λ) = C j(λ − λ̂ j)p j (B.5)

where C j is a constant. This shows that λ̂ j for j = 1, . . . , n are roots of πn . Thus

πn(λ) = C
n∏

j=1

(λ − λ̂ j) = Cπ̃n(λ) (B.6)

for some constant C .
If one varies the values λ̂, the quantity (B.1) yields ‖p(λ)‖2

τ for some polynomial p of the order n and the coefficient of 
λn equal to 1. Therefore p can be represented as

p(λ) = πn(λ) + r(λ) (B.7)

where the order of r is at most n − 1. Because of (B.6), πn is τ orthogonal to r and thus

‖p‖2
τ = ‖πn‖2

τ + ‖r‖2
τ

so

‖p‖2
τ ≥ ‖πn‖2

τ �
Appendix C. Example code for high precision inner product

We present an example code for high precision inner product. Calculations are done in quadruple precision, yet input 
vectors are in double precision.

subroutine HighPrecisionInnerProduct(N,x,y,res)
implicit none
integer ,intent(in) :: N
real(8) ,intent(in) :: x(N),y(N) ! input in double precision
real(16),intent(out) :: res ! output in quadruple precision
! local variables:
integer :: i
res = 0
do i = 1,N

! calculations in quadruple prec.
res = res + real(y(i),16)*real(x(i),16)

enddo
endsubroutine HighPrecisionInnerProduct
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