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The paper formulates inverse homogenization problem as a problem of recovery of Markov function using diagonal Padé
approximants. Inverse homogenization or de-homogenization problem is a problem of deriving information about the micro-
geometry of composite material from its effective properties. The approach is based on reconstruction of the spectral measure
in the analytic Stieltjes representation of the effective tensor of two-component composite. This representation relates the
n-point correlation functions of the microstructure to the moments of the spectral measure, which contains all information
about the microgeometry. The problem of identification of the spectral function from effective measurements in an interval
of frequency has a unique solution. The problem is formulated as an optimization problem which results in diagonal Padé ap-
proximation and exact formulas for the moments of the measure. The reconstructed spectral function can be used to evaluate
geometric parameters of the structure and to compute other effective parameters of the same composite; this gives solution to
the problem of coupling of different effective properties of a two-component composite material with random microstructure.

1 Uniqueness of reconstruction of Stieltjes representation of the effective property

The structural information is contained in the spectral measure μ in the Stieltjes representation of the effective complex
permittivity ε∗ developed in [1, 8, 6] in the course of computing bounds for the effective permittivity ε∗ of an arbitrary two-
component mixture. The spectral measure or its moments can be reconstructed from effective measurements and used to
characterize parameters of the microstructure [7, 5, 10] or to estimate other effective properties of the same material [3, 4]. It
is shown in [3] that the measure μ can be uniquely recovered from the effective complex permittivity given on an arc C ⊂ C

in the complex plane. The problem is reduced to inverse potential problem and solved using regularized method in [3, 4]. A
concept of S−equivalency of structures is introduced [3] for micro-geometries of composites which cannot be distinguished
by effective measurements; it is shown that the S−equivalent structures correspond to the same spectral functions. Numerical
algorithm based on [p, q]-Padé approximations is constructed in [10]. [2] develops application to viscoelastic torsion problem
and evaluation of volume fractions of materials in the composite from torsion experiment.

We consider a stationary random fine-scale mixture of two materials with properties ε1 and ε2, and introduce a characteristic
function χ of the regionO1 occupied by the first material for a realization η ∈ Ω, where Ω is the set of all realizations of the
random medium, χ(x, η) = 1 if x ∈ O1 and χ(x, η) = 0 otherwise. The complex permittivity of the medium is modeled
by a (spatially) stationary random field ε(x, η), x ∈ R

d and η ∈ Ω, ε(x, η) = ε1χ(x, η) + ε2(1 − χ(x, η)). The stationary
random fields E(x, η) and D(x, η), are related by D(x, η) = ε(x, η)E(x, η) and satisfy the equations∇ ·D = 0,∇× E =
0, 〈E(x, η)〉 = ek with ek being a unit vector in the kth direction, for some k = 1, . . . , d, where 〈 · 〉 is ensemble average over
Ω or spatial average over all of R

d. The effective tensor ε∗ is defined as coefficient of proportionality between the averaged
fields: 〈D〉 = ε∗〈E〉 . The inverse homogenization problem [3] is a problem of characterization of function χ from the
effective property ε∗:

∇ · (ε1χ(x, η) + ε2(1− χ(x, η)))E = 0, ε∗ = 〈εE〉 (1)

The approach is based on reconstruction of the spectral measure μ in the Stieltjes analytic representation, since the function μ
contains all information about function χ.

The Stieltjes analytic representation of the effective complex permittivity ε∗ was developed in [1, 8, 6] in the course of
computing bounds for the effective permittivity ε∗ of an arbitrary two-component mixture. Introducing s = 1/(1 − ε1/ε2),
(1) can be written as

∇ · χ E = s∇ · E , s =
1

1− ε1/ε2
(2)

Let ∇φ be a perturbation of the constant field ek , so that E = ek +∇φ . Then, ∇ · χ (∇φ + ek) = sΔφ . Introducing an
operator Γ = ∇(−Δ)−1(∇·), we can express E as a function of Γχ, E = s(sI + Γχ)−1ek. The spectral resolution of Γχ
with the measure Q results in the spectral representation for the field E, which is used to obtain the analytic representation for
the function F (s) = 1− ε∗(s)/ε2. Indeed, the function F (s) = Fkk(s) = 〈χ ( sI + Γχ )−1ek, ek〉 can be represented as

F (s) =

∫ 1

0

〈χ dQ(z) ek, ek〉

s− z
=

∫ 1

0

dμ(z)

s− z
with dμ(z) = 〈χ dQ(z)ek, ek〉 (3)
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where μ is a positive function of bounded variation corresponding to the spectral measure Q. The spectral measure μ contains
all information about the function χ and about the structure of the medium; having reconstructed it, we recover information
about the structure χ.

Theorem 1.1 ([3]) The measure μ can be uniquely reconstructed if the function F (s) is known on an open set C ⊂ C of
the complex variable s with a limiting point.

The proof is based on analytic continuation and reduction of the problem to Hausdorff moment problem. From theorem it
follows immediately that the moments μn of the measure μ can be uniquely recovered under the same conditions.

2 Padé approximants

The integral representation (3) of F (s) shows that function F (s) is Markov function of the measure μ. Suggested approach
to Padé approximations exploits this fact and is based on a number of special properties of Padé approximants to Markov
functions ([9]). Diagonal Padé approximant of order n to the function F (s) is a unique rational function πn

πn =
Pn(s)

Qn(s)
, s.t. Qn(s)F (s)− Pn(s) = O

(
1

sn+1

)
(4)

where polynomial Qn(s) has degQn ≤ n, and Pn(s) is a polynomial part of the series Qn(s)F (s). It is known that the
solution to this problem always exists with deg Qn(s) = n, deg Pn(s) ≤ n− 1.

It can be shown that {Qn} is a set of polynomials orthogonal with respect to the spectral measure μ, and zeros of orthogonal
polynomials are all real, simple, and lie in the convex hull Ŝμ of support of the measure μ. Then πn has a partial fraction
decomposition of the form:

πn =
Pn(s)

Qn(s)
=

n∑
j=1

rn,j

s− sn,j

with rn,j = ress=sn,j
πn(s) =

Pn(s)

Q′n(s)
, j = 1, ..., n (5)

where sn,j are zeros of polynomial Qn, and rn,j are residues which are Christoffel coefficients.
Theorem 2.1 Diagonal Padé approximant πn(s) to the Markov function F (s) solves optimization problem: Find a

rational function r(s) = Pn(s)
Qn(s) , deg r ≤ n s. t. ||F (s)− r(s)|| → inf subject to the constraints: 0 ≤ sn,j ≤ 1, 0 ≤ rn,j ≤ 1

Proof is based on Gauss-Jacobi formula and the fact that support of the measure μ of the operator Γχ belongs to the unit
interval, Ŝμ ∈ [0, 1]. Theorem justifies numerical algorithm constructed in [10].

Convergence of the sequence of Padé approximants to the Markov function is given by Markov theorem.
Theorem 2.2 (Markov) Diagonal Padé approximants πn of the Markov function μ̂ converge to μ̂ uniformly on compact

subsets of the domain Ĉ\Ŝμ.
Using Laurent expansion of the function F (s) and expanding the integral Cauchy kernel, we obtain a series representation

for F (s) with the coefficients given by Stieltjes moments μn of the measure μ

F (s) =
∞∑

n=0

1

sn+1

∫ 1

0

zndμ(z) =
∞∑

n=0

μn

sn+1
, μn =

∫ 1

0

zndμ(z) , n = 0, 1, 2, ... (6)

Accuracy of diagonal Padé approximation is: F (s) − πn(s) = O
(
s−(2n+1)

)
. Expanding the partial fraction (5) into series,

and comparing with power series expansion of F (s), we obtain
Theorem 2.3 The formulas for the moments μk of the spectral measure μ of operator Γχ = ∇(−Δ)−1(∇ · χ) are given

by μk =
∑n

j=1 rn,js
k
n,j . The formulas are exact for k = 0, 1, ..., 2n− 1.
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