Characterization of structure and properties of bone by spectral measure method

Elena Cherkaeva,*, Carlos Bonifasi-Listab

a University of Utah, Department of Mathematics, 155 South 1400 East, JWB 233, Salt Lake City, UT 84112-0090, United States

b Universidad de Castilla-La Mancha, Departamento de Matematicas, E.T.S Ingenieros Industriales, Ciudad Real, Spain

\textbf{A R T I C L E I N F O}

Article history:
Accepted 21 October 2010

\textbf{Keywords:}
Viscoelastic composite
Stieltjes representation
Spectral function
Inverse homogenization
Bone volume

\textbf{A B S T R A C T}

Novel mathematical method called spectral measure method (SMM) is developed for characterization of bone structure and indirect estimation of bone properties. The spectral measure method is based on an inverse homogenization technique which allows to derive information about the structure of composite material from measured effective electric or viscoelastic properties. The mechanical properties and ability to withstand fracture depend on the structural organization of bone as a hierarchical composite. Information about the bone structural parameters is contained in the spectral measure in the Stieltjes integral representation of the effective properties. The method is based on constructing the spectral measure either by calculating it directly from micro-CT images or using measurements of electric or viscoelastic properties over a frequency range. In the present paper, we generalize the Stieltjes representation to the viscoelastic case and show how bone microstructure, in particular, bone volume or porosity, can be characterized by the spectral function calculated using measurements of complex permittivity or viscoelastic modulus. For validation purposes, we numerically simulated measured data using micro-CT images of cancellous bone. Recovered values of bone porosity are in excellent agreement with true porosity estimated from the micro-CT images. We also discuss another application of this method, which allows to estimate properties difficult to measure directly. The spectral measure method based on the derived Stieltjes representation for viscoelastic composites, has a potential for non-invasive characterization of bone structure using electric or mechanical measurements. The method is applicable to sea ice, porous rock, and other composite materials.

\section{1. Introduction}

Bone is a hierarchical composite whose ability to withstand fracture depends on the bone structural organization. At the microscale, cancellous bone is a heterogeneous composite formed of trabeculae with bone marrow filling its porous spaces (see Fig. 1). The macroscopic mechanical properties such as bone stiffness and strength depend on bone microstructure, density, and stiffness of the bone tissue (Hollister et al., 1991; Crolet et al., 1993; Aoubiza et al., 1996; Lakes, 2001; Cowin, 2001; Hellmich et al., 2004). To analyze the dependence of the bone properties on its structure, trabecular architectures were idealized as open and close cell high porosity models (Gibson, 1985; Keaveny, 1997; Kabel et al., 1999b). Non-destructive imaging methods such as X-ray and micro-CT, have been developed to predict the mechanical properties of the bone from its structure by correlating measured by X-ray or CT structural parameters with results of mechanical tests or numerical simulations (Kabel et al., 1999a). Bone morphology was related with ultrasound propagation, methods aimed at numerical recovery of bone density and structural parameters from ultrasonic data have been developed (Chaffai et al., 2002; Padilla and Laugier, 2005; Padilla et al., 2008; Fang et al., 2007; Buchanan et al., 2003, 2004; Gilbert et al., 2009).

Mechanical properties of bone are linked with bone volume, fabric tensor, and anisotropy (Cowin, 1985; Hodgkinson and Currey, 1990; Zysset et al., 1998; Goulet et al., 1994; Van Rietbergen et al., 1998; Van Rietbergen and Huiskies, 2001). Though the trabecular morphology determines the elastic properties of cancellous bone, not many analytical models are available to relate the properties and morphology (Kabel et al., 1999a).

Spectral measure method of characterization of bone structure is a method that provides relations between structural parameters and electric and viscoelastic properties. It is based on results of
forward and inverse homogenization for materials with microstructure. This method is not site specific, it relies neither on correlation analysis nor on assumptions about a particular morphology of bone. Based on analytical relations and characterization of resonances of the bone structure, spectral measure method provides a basis for relating microstructural parameters to effective electric, elastic, and viscoelastic behavior of bone as well as for modeling and predicting bone structure from electrical, mechanical, and potentially, ultrasound data.

Mechanical behavior of a composite material depends on properties of the components as well as on the microarchitecture. Various approaches to calculation of effective properties from known microstructural information, have been developed using homogenization theory (Sanchez-Palencia, 1980; Hollister et al., 1994; Bergman, 1993; Zou, 2002; Milton, 2002). One of the methods developed for bounding the effective complex permittivity of a composite formed by two materials with given complex permittivity, used the analytic Stieltjes representation of the effective property (Bergman, 1978; 1980; Milton, 1980; Golden and Papanicolaou, 1983). The Stieltjes representation analytically relates the effective properties to microstructural information through the spectrum of a corresponding linear operator. Specifically, the moments of the spectral measure in this representation are linked to the n-point correlation functions of the microstructure. Another important feature of the Stieltjes representation of the effective properties is that it factors out the dependence on the constituents in the composite from the dependence on the microgeometry. The information about the microstructure is contained in the spectral measure in the Stieltjes representation of the effective properties. This feature of the Stieltjes representation allows us to recover microstructural parameters from effective properties using inverse homogenization. The inverse homogenization is based on the recovery of the spectral measure which contains information about the microgeometry (Cherkaev, 2001). Once the spectral measure is known, it can be used to characterize the bone morphology. The spectral measure can be constructed directly from the images obtained from regular CT or micro-CT, or it can be recovered from non-invasive electric or viscoelastic measurements over a range of frequencies.

The problem of extraction of structural information from measured transport properties of composite materials was introduced in McPheadran et al. (1982) for estimating volume fractions of constituents in the composite. In Cherkaev (2001), identification of structural information from measured effective property was formulated as an inverse problem for the spectral measure in the Stieltjes analytic representation. It was shown that the spectral measure can be uniquely recovered from the measurements of the effective property over a range of frequencies (Cherkaev, 2001).

Uniqueness of reconstruction of the spectral measure gives the basis for the theory of inverse homogenization and the spectral measure method (SMM). The term SMM was coined in Bonifasi-Lista and Cherkaev (2009), where the method was used to estimate bone porosity from data of complex conductivity of bone samples numerically simulated using micro-CT images.

The analytic Stieltjes representation was extended to the effective elastic properties of a composite material in Kantor and Bergman (1982, 1984), Bergman (1985), Dell’Antonio et al. (1986), Bruno and Leo (1993), Milton (2002) and Ou and Cherkaev (2006). Stieltjes representation for the effective viscoelastic shear modulus obtained from torsion of a viscoelastic cylinder whose microstructure does not depend on the axial direction, was derived in Tokarzewski et al. (2001), Bonifasi-Lista and Cherkaev (2006a, b, 2008), assuming St.Venant principle and using mathematical equivalency between conductivity problem and elastic torsion of such cylinder. In Tokarzewski et al. (2001), this representation was used to bound the effective shear modulus of cancellous bone filled with bone marrow. Based on this representation, the inverse homogenization approach was applied in Bonifasi-Lista and Cherkaev (2006a, b, 2008), and Bonifasi-Lista et al. (2009) to successfully recover porosity of cancellous and compact bone from simulated measurements of the viscoelastic shear modulus for the simplified model of bone viewed as a cylinder, filled with viscoelastic composite of trabecular tissue and bone marrow, realistic data were simulated using micro-CT images of cancellous bone.

2. Mathematical methods

2.1. Spectral measure method

We consider bone as a two component composite formed by trabecular tissues and bone marrow and introduce a characteristic function χ of the subdomains occupied by one of the materials. In bioelectrical applications, low frequency electric fields are used in practice, the appropriate parameter characterizing properties of the medium, is complex conductivity σ. The complex conductivity σ of the medium is modeled by a function $\sigma(x) = \sigma_1 G(x) + \sigma_2 (1 - G(x))$, where $\sigma_1, i = 1, 2$, is complex conductivity of the i-th material, bone marrow or trabecular tissue, and the characteristic function $G(x)$ takes values 1 if x is in the region of first material, bone marrow, and zero if x is in the region occupied by the second material. The effective tensor σ^* is a coefficient of proportionality between the averaged electric and displacement fields: $\langle J \rangle = \sigma^* \langle E \rangle$, and the electric field is governed by equation: $\nabla \cdot (\sigma_1 G(x) + \sigma_2 (1 - G(x))) = 0$. Introducing $s = 1/(1 - \sigma_1/\sigma_2)$, the derivation of the Stieltjes representation uses a spectral decomposition of an operator $I = \nabla(-\Delta)^{-1}(\nabla \cdot G)$, and results in the integral representation for a function $F(z) = 1 - \sigma^*/\sigma_2$ as an analytic function off $[0, 1]$-interval in the complex s-plane:

$$F(s) = \int_0^1 \frac{d\eta(z)}{s - z}$$

Here the function η is the spectral measure of the self-adjoint operator I, which contains information about the structural parameters. The spectral function η can be uniquely reconstructed if measurements of the effective properties of the composite are known along some arc in the complex s-plane (Cherkaev, 2001). Such data can be obtained from effective measurements in an interval of frequency provided the properties of the constituents are dependent on frequency. The spectral moments η_n of the spectral measure η,

$$\eta_n = \int_0^1 z^n d\eta(z), \quad \eta_0 = \int_0^1 d\eta(t) = \rho_1$$

Fig. 1. At the microscale, cancellous bone is a heterogeneous composite material formed of trabeculae and bone marrow. Photograph of trabecular bone is courtesy of Scott C. Miller.
can be used to characterize the microgeometry of bone. In particular, the zero moment \(\eta_0 \) of the function \(\eta \) gives us the volume fraction \(p_1 \) of the first component, bone marrow or trabecular tissue, depending on how the problem is formulated.

A representation similar to (1) is valid for torsion of a viscoelastic cylinder in which the microstructure does not depend on the axial direction. If the effective viscoelastic shear modulus of such composite is given by a complex number \(\mu^* \), and \(\mu_i, i = 1, 2 \), are the complex shear moduli of the constituents, the Stieltjes representation (1) holds for a function \(F_\mu(s) = 1 - \mu^* / (s + i) \). The spectral function \(\eta \) in the representation (1) relates various properties of the composite. If the function \(\eta \) is known from the electromagnetic measurements, the effective viscoelastic modulus of bone can be easily estimated by calculating the following integral:

\[
\mu^* = \mu_2 - \mu_1 F_\mu(s) = \mu_2 - \mu_1 \int_0^1 \frac{d\eta(z)}{s-z}
\]

(3)

with \(s = 1/(1-\mu_1/\mu_2) \). An example of such relation or coupling between complex permittivity and thermal conductivity was considered in Cherrya (2003) and Cherrya and Zhang (2003), where thermal conductivity of sandstone was estimated using measurements of its effective permittivity. This spectral coupling might provide a way to indirectly calculate bone properties which are difficult to access directly, such as thermal conductivity, diffusivity, or bone permeability.

2.2. Stieltjes analytical representation for viscoelastic properties

Here we generalize the Stieltjes representation for effective viscoelastic modulus to the case of general loading. In particular, this representation works for uniaxial loading which is an important case in various experimental setups. We assume that (i) the constituents are isotropic materials with the same elastic bulk modulus \(\kappa \), (ii) one of the materials (bone marrow) has viscoelastic shear modulus \(\mu_1 \), (iii) the shear modulus \(\mu_2 \) of the second material (trabecular tissues) is elastic. We use here the Einstein summation convention of summing on repeated indices.

Let \(\Omega \) be a domain filled with a heterogeneous material composed of two phases, viscoelastic material \(C^0 \) in a subdomain \(\Omega_1 \) and elastic phase \(C^2 \) in the region \(\Omega_2 \). Consider a boundary value problem for vector of displacement \(u \) in a domain \(\Omega \) with boundary \(\partial \Omega \):

\[
\sigma_{ij} = 0 \quad \text{in} \quad \Omega
\]

(4)

\[
\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \quad \text{in} \quad \Omega
\]

(5)

\[
u = \nabla u \quad \text{on} \quad \partial \Omega
\]

(6)

Here \(\sigma \) and \(\varepsilon \) are tensors of strain and stress, respectively, strain \(\varepsilon \) is a symmetrized gradient \(\nabla \Theta \) of displacement, \(u = \nabla u = (U_u + U_v)/2 \), and \(\Theta^0 \) is a constant strain tensor. The fourth order tensor \(C \) is the stiffness tensor which depends on the properties of the phases and the characteristic function \(\chi = \chi(x) \) of domain \(\Omega \) occupied by bone marrow tissue, the function \(\chi(x) \) takes values 1 if \(x \in \Omega_1 \) and zero if \(x \in \Omega_2 \), where \(\Omega_2 \) is the region occupied by the trabecular tissue. Using this function \(\chi \), we represent the tensor \(C(x) \) as \(C(x) = \chi(x) C^0 + (1 - \chi(x)) C^2 \). Without loss of generality, we assume that the domain \(\Omega \) has unit volume, \(|\Omega| = 1 \), and introduce an operation of averaging \(\langle f \rangle \) of a function \(f \) over the domain \(\Omega \),

\[
\langle f \rangle = \int_\Omega f(x) \, dx
\]

We notice that solution of the problems (4)–(6) satisfies

\[
\langle \sigma \rangle = 0
\]

(7)

The effective viscoelastic tensor \(\tilde{C} \) is introduced as a coefficient of proportionality between the average strain and stress. Using Eq. (5), the average stress \(\langle \sigma \rangle \) can be written as

\[
C_{ijkl} = \int_\Omega \sigma_{ijkl}(x) \chi(x) \, dx = C_{ijkl}^0 \chi(x)
\]

(8)

Here,

\[
C_{ijkl} = \int_\Omega C_{ijkl}(x) \chi(x) \, dx = C_{ijkl}^0 \chi(x)
\]

(9)

Using contraction notation, this can be written as

\[
C^* : \varepsilon^0 = C_{ijkl}^0 \varepsilon_{ij} = \int_\Omega C_{ijkl}(x) \chi(x) \, dx = \int_\Omega C(x) : \varepsilon(x) \, dx
\]

(10)

Isotropic elastic (or viscoelastic) tensor can be represented as

\[
C_{ijkl} = \kappa \delta_{ijk} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3} \delta_{ik} \delta_{jl})
\]

(11)

We introduce isotropic fourth order projection tensors \(A_{kl} \) and \(A_{ijkl} \) as

\[
\langle A_{ij} \rangle_{ijkl} = \delta_{ij} \delta_{kl}, \quad \langle A_{ijkl} \rangle_{ijkl} = \delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} - \frac{2}{3} \delta_{ij} \delta_{kl}
\]

(12)

Here, \(\delta_{ij} \) is the Kronecker delta. The tensors \(A_{ij} \) and \(A_{ijkl} \) are hydrostatic and deviatoric projections onto the orthogonal subspaces of the second order tensors comprised of tensors proportional to the identity and trace-free tensors. Using these projections, the isotropic properties \(C \) of materials in the domain \(\Omega \) can be written as

\[
C^* = \kappa A_{ij} + \mu A_{ijkl}, \quad i = 1, 2
\]

(13)

Now we rewrite problem (4) in the following form:

\[
\nabla \cdot (\chi(x) C^1 - (1 - \chi(x)) C^2) : \varepsilon = 0
\]

(14)

Using (13) we have

\[
\nabla \cdot (\kappa A_{ij} + \mu A_{ijkl} + (1 - \chi(x)) \mu_2 A_{ijkl} - \mu_1 A_{ijkl}) : \varepsilon = 0
\]

(15)

Eq. (15) can be written in terms of a complex parameter \(s \), \(s = \mu_2 (\mu_2 - \mu_1) \), as

\[
\nabla \cdot \left(\frac{\kappa}{\mu_2} A_{ij} + \left(1 - \frac{1}{s} \right) A_{ijkl} \right) : \varepsilon = 0
\]

(16)

By writing \(\varepsilon \) as \(\varepsilon = \varepsilon^0 + \nabla^2 \phi \), where \(\phi \) is vector perturbation, and using \(\kappa_2 = \kappa/\mu_2 \), we obtain

\[
\nabla \cdot (\kappa_2 A_{ij} + 1 A_{ijkl}) : (\varepsilon^0 + \nabla^2 \phi) = \frac{1}{s} \nabla \cdot \chi(x) A_{ijkl} : (\varepsilon^0 + \nabla^2 \phi)
\]

(17)

The operator in the left-hand side is elastic operator with constant coefficients, denoting it as \(L(\kappa_2, 1) \phi = \nabla \cdot (\kappa_2 A_{ij} + 1 A_{ijkl}) : \nabla^2 \phi \), we can rewrite the last problem in the following form:

\[
L(\kappa_2, 1) \phi = \frac{1}{s} \nabla \cdot \chi(x) A_{ijkl} : (\varepsilon^0 + \nabla^2 \phi)
\]

(18)

Let \(G = (\kappa_2, 1)^{-1} \) be the tensor Green's operator for the isotropic elastic problem with constant bulk modulus \(\kappa_2 \) and constant unit shear modulus. Applying \(G \) to both sides of the previous equation, then taking gradient and adding \(\varepsilon^0 \), we obtain

\[
(\nabla^2 \phi + \varepsilon^0) - \frac{1}{s} \nabla^2 G \cdot \chi(x) A_{ijkl} : (\varepsilon^0 + \nabla^2 \phi) = \varepsilon_0
\]

(19)

Introducing operator \(G \) as \(G = \nabla^2 G(\nabla^2 \cdot) \), we express the strain \(\varepsilon \) as a function of \(\chi(x) A_{ijkl} \)

\[
\varepsilon = - \frac{1}{s} \nabla^2 G : \chi(x) A_{ijkl} : \chi = \varepsilon^0
\]

(20)

We will take projection on deviatoric subspace

\[
A_{ijkl} : \chi = \varepsilon_0
\]

(21)
Let e_s be deviatoric projection of the strain e_s; $e_s = A_s : e_s$. Using idempotence of projection operator, $A_s^2 = A_s$, we obtain

$$
\left(\frac{1}{\xi} A_s : \mathcal{G} \mathcal{X} A_s \right) : e_s = e_s^0
$$

so that $e_s = s(1 - A_s : \mathcal{G} \mathcal{X} A_s)^{-1} : e_s^0$.

We notice here that introduced in this way operator $\mathcal{G} = \nabla^2 \mathcal{G}(\nabla \cdot)$ with $\mathcal{G} = (-l(\mathcal{K}_2, 1)^{-1})$, is the analogue for elasticity of the operator $\Gamma = (-\nabla^2)^{-1}(\nabla \cdot)$ used in the problem for effective complex conductivity.

The stiffness tensor in $l(\mathcal{K}_2, 1)$ is real symmetric tensor. We can check that $A_s : \mathcal{G} \mathcal{X} A_s$ is a self-adjoint operator with respect to inner product $\langle f, g \rangle = \langle f \mathcal{X} g \rangle$ where f, g are second order symmetric strain tensors. We use J to denote the complex conjugate of f and $\langle \cdot, \cdot \rangle$ is the averaging operator.

Then we can use spectral representation and write e_s as

$$
e_s = \int_0^1 \frac{\sin \theta(\mathcal{Q}(z)A_s e_s^0)}{s - z} dz
$$

where Q is the projection valued measure of the operator $A_s \mathcal{G} \mathcal{X} A_s$. Now exploiting this integral representation for e_s and using $e_s^0 = A_s : e_s^0$, we derive spectral representation for function $F(s)$ which we define as

$$
F(s) = \frac{\rho^0 : C^2 : \rho^0 : e_s^0 : C^2 : \rho^0}{\rho^0 : C^2 : \rho^0 : e_s^0 : C^2 : \rho^0}
$$

where $\rho^0 : C^2 : \rho^0 : e_s^0 : C^2 : \rho^0$: $\mu_s^0 |q_j|^2$.

A direct calculation using (24) gives

$$
F(s) = \frac{\mu_s^0 : C^2 : \rho^0 : e_s^0 - \mu_s^0 : e_s^0 : C^2 : \rho^0 + \mu_s^0 : e_s^0}{\mu_s^0 : C^2 : \rho^0 : e_s^0}
$$

where we used definition of the inner product in the last step. Let e_s be a unit strain tensor:

$$
e_s = \frac{A_s : e_s^0}{\| A_s : e_s^0 \|} = \frac{\rho^0}{\| \rho^0 \|}
$$

then we can rewrite the integral representation for $F(s)$ as

$$
F(s) = (\mu_s^0) |q_j|^2 \int_0^1 \frac{\mu_s^0 < \mathcal{Q}(z) e_s^0, e_s^0 >}{s - z} dz
$$

By introducing the spectral measure $d\eta(z) = < \mathcal{Q}(z) e_s^0, e_s^0 >$, we obtain the representation

$$
\varepsilon_j : e_s^0 = \frac{\rho^0 : C^2 : \rho^0 : e_s^0 : C^2 : \rho^0}{\rho^0 : C^2 : \rho^0} = \int_0^1 d\eta(z)
$$

The derived representation allows us to extend the theory to mechanical and ultrasonic applications.

2.3. Inverse problem for the spectral measure

Information about bone morphology is contained in the spectral measure of the Stieltjes representation and in the spectral moments. Evaluation of first several moments of the spectral function was discussed in McPhedran et al. (1982), McPhedran and Milton (1990), Engstrom (2006), and Cherkaev and Ou (2008), analytic inverse bounds on the volume fraction of one material in the composite were derived in Cherkaeva and Tripp (1996), Tripp et al. (1998), and Cherkaeva and Golden (1998), the spectral function was reconstructed from effective permittivity in particular applications (Day and Thorpe, 1999; Day et al., 2000; Cherkaev and Zhang, 2003; Zhang and Cherkaev, 2008). The problem of reconstruction of the spectral measure is ill-posed, which means instability of the solution to small errors in the measurements, therefore a regularized algorithm is needed to recover a stable numerical solution (Cherkaev, 2001, 2003; Zhang and Cherkaev, 2009).

Computation of the spectral function η is mathematically analogous to the analytic continuation and inverse potential problem. Indeed, the reconstruction of the spectral measure η can be reduced to an inverse potential problem by representing the function $F(s)$ using logarithmic potential of the measure η (Cherkaev, 2001)

$$
F(s) = \frac{d}{dz} \int_0^1 \ln |s-z| d\eta(z), \quad \partial / \xi s = (\partial / \xi x - i \partial / \xi y)
$$

To construct the solution we formulate the minimization problem: $|A\eta - F|_1 \rightarrow \min$ where A is the integral operator in (32). Ill-posedness of the problem manifests itself in the absence of continuous dependence of the solution on the data: the operator A^{-1} is unbounded, this leads to large variations in the solution even for very small variations in the data, numerical algorithms become unstable, the problem requires regularization. Regularization algorithm is based on constrained minimization. It introduces a stabilization functional which constrains the set of minimizers. As a result, the solution depends continuously on the input data, the numerical algorithm is stable. Introducing $s = x + iy$ and separating real and imaginary parts of function $F(s)$, we obtain

$$
\text{Re}(F(s)) = \int_0^1 \frac{(x - z) d\eta(z)}{(x - z)^2 + y^2}, \quad \text{Im}(F(s)) = -\int_0^1 \frac{y d\eta(z)}{(x - z)^2 + y^2}
$$

We reformulate the problem as an unconstrained minimization using a Lagrange multiplier. In case of a quadratic stabilization functional, the minimization problem takes the following form equivalent to Tikhonov regularization with regularization parameter $\alpha : \min_{\eta} e - \text{Re}(G - f)^2 + \alpha \|g - e\|^2$. Here K is discretized integral operator corresponding to real or imaginary part of $F(s)$ in integral representation (33). Function F is either real or imaginary part of $F(s)$ obtained experimentally, and g is the discretization of $d\eta(z) = g dz$. One of the ways to find the minimizer is to solve the Euler equation, $g_\alpha = (K' K + d\alpha)^{-1} K f$. An alternative regularization algorithm uses nonnegativity constraint for function g. Indeed, the spectral measure in (1) is a nondecreasing function, hence g is a nonnegative function. Both these methods give similar results in the numerical experiments we describe in the next section.

3. Results

For validation of the method, we simulated data using micro-CT images of trabecular bone. The effective complex permittivity, effective complex shear modulus, and Young modulus of the 2D bone samples were calculated using finite element method. One of the micro-CT images is shown in Fig. 2. The effective shear and Young moduli were calculated assuming cylinder model with properties constant along the axial direction. For the electrical problem, we used available data on conductivity and permittivity of trabecular and marrow tissues (Gabriel et al., 1996a, b). We assumed that σ_1 was the complex conductivity of the bone tissues, and σ_2 was the complex conductivity of bone marrow.

In the first series of numerical experiments, simulated conductivity values were used as data for the spectral measure reconstruction algorithm. Fig. 3 presents spectral function for bone sample shown in the micro-CT image in Fig. 2. The spectral function was calculated from real and imaginary parts of $F(s)$.
using Tikhonov and nonnegativity regularization. We used recovered spectral function to estimate bone volume by calculating zeroth moment of the function η.

Results presented in Table 1, show that the bone volume is recovered very accurately with an error less than 0.1%. Table 1 shows the recovered volume fraction of trabeculae V for four different specimens of trabecular bone. True porosity of the samples was determined digitally from micro-CT scans.

<table>
<thead>
<tr>
<th>V_{true}</th>
<th>V_{RT}</th>
<th>V_{IT}</th>
<th>V_{RN}</th>
<th>V_{IN}</th>
<th>V_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0740</td>
<td>0.0777</td>
<td>0.0753</td>
<td>0.0757</td>
<td>0.0759</td>
<td>0.0762</td>
</tr>
<tr>
<td>0.0743</td>
<td>0.0746</td>
<td>0.0713</td>
<td>0.0751</td>
<td>0.0729</td>
<td>0.0734</td>
</tr>
<tr>
<td>0.0755</td>
<td>0.0743</td>
<td>0.0763</td>
<td>0.0743</td>
<td>0.0763</td>
<td>0.0753</td>
</tr>
<tr>
<td>0.1012</td>
<td>0.1041</td>
<td>0.1009</td>
<td>0.1041</td>
<td>0.1010</td>
<td>0.1025</td>
</tr>
</tbody>
</table>

V_{RT} and V_{IT} columns show results of calculation using Tikhonov regularization, V_{RN} and V_{IN} stand for results with nonnegativity constraint, R or N in the heading indicates real or imaginary part of $F(s)$ used in calculation, V_{av} is the average bone volume.

The reconstructed spectral function can be characterized by its spectral moments. Fig. 4 shows moments of the spectral function presented in Fig. 3. The bone spectral moments are given by the pluses. For comparison, asterisks show moments of the spectral function of Maxwell–Garnett composite of the same porosity. Large difference between the sequences of the moments suggests that the spectral moments can be used to characterize the bone structure.

The next series of numerical experiments was performed to verify the spectral coupling by comparing complex shear modulus calculated using spectral function recovered from electric data, and viscoelastic shear modulus computed using FEM. To calculate viscoelastic properties of bone, we considered cancellous bone as a composite of trabecular tissue and bone marrow. We used the model of viscoelastic shear modulus for bone marrow developed in Bonifasi-Lista et al. (2009). Comparison of the shear values obtained with two different methods is presented in Fig. 5.

To study the integral representation derived in Section 2, we numerically simulated measurements of Young modulus for the
Bonifasi-Lista and Cherkaev (2008) and Bonifasi-Lista et al. These properties are subject-specific and depend on pathologic which in practice could be known with some uncertainty, since knowledge of the properties of trabeculae tissue and marrow, computational noise was present. The method requires a priori such as creep experiments and ultrasonic testing.

The modulus of bone is 5 GPa, of marrow is around 200 Pa). The but to simulate the measurements we need to solve the 3D forward relations between bone’s heterogeneous structure and effective properties. We believe that the assumption allows us to simplify the problem and make it amendable to mathematical analysis. We believe that the assumption of equal bulk moduli should not be too restrictive because the largest difference is in shear moduli of trabeculae and marrow. The ratio of the bulk modulus of solid bone matrix (14 GPa) and the bulk modulus of bone water or marrow (2.3 GPa) is around six. In comparison, the ratio of shear moduli is of order 10⁵ (shear modulus of bone is 5 GPa, of marrow is around 200 Pa). The developed representation extends the theory to other applications such as creep experiments and ultrasonic testing.

In all calculations, we used data without noise, only computational noise was present. The method requires a priori knowledge of the properties of trabeculae tissue and marrow, which in practice could be known with some uncertainty, since these properties are subject-specific and depend on pathologic conditions. Extensive study of stability of the algorithm in Bonifasi-Lista and Cherkaev (2008) and Bonifasi-Lista et al. (2009), shows that the bone porosity is accurately recovered even in the presence of high level of uncertainty or errors in the data and estimates of the properties.

We notice that the electric and elastic spectral functions are different functions. However, they coincide in the case of torsion of a cylinder whose microstructure does not depend on the axial direction. Calculations of viscoelastic properties from electric spectral function, were performed with assumption that the microgeometry does not change along the third direction. This simplified bone model allows us to see new effects in modeling relations between bone's heterogeneous structure and effective electric and viscoelastic properties. Calculated from electric spectral function, the SMM prediction of the complex viscoelastic shear modulus and the FEM simulated modulus are in excellent agreement. The method of estimation of viscoelastic modulus from electric data might provide a non-invasive tool to assess fracture risk in bones. These numerical results demonstrate potential for use of the SMM for indirect evaluation of bone properties which are difficult to measure directly.

In the present paper, all calculations were done in 2D. In 3D case, we can use the same inversion method for the spectral measure, but to simulate the measurements we need to solve the 3D forward problem, which is computationally more intensive. In general case of 3D material, the viscoelastic spectral function is different from the electric spectral function. We expect that the electric and elastic spectral functions of bone should be similar because they correspond to the same trabecular structure, however, establishing relations between them is a future research topic. Another future direction of research is to relate the recovered spectral function and its moments to clinically relevant parameters of characterization of cancellous bone architecture such as trabeculae thickness, spacing, connectivity, surface density.

Conflict of interest statement

The authors declare that there is no conflict of interest associated with this work.

Acknowledgements

We would like to thank Yener N. Yeni and Janardhan Yerramshetty for providing micro-CT images of cancellous bone that we used in numerical simulations. We are also thankful to Maria-Grazia Ascenzi for helpful comments and Scott Miller for providing us with a photograph of cancellous bone. This research was partially supported by NSF Grant DMS/CMG-0934721.

References

Table 2

<table>
<thead>
<tr>
<th>p_{true}</th>
<th>p_{PR}</th>
<th>p_{BN}</th>
<th>p_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8987</td>
<td>0.8758</td>
<td>0.8900</td>
<td>0.8829</td>
</tr>
<tr>
<td>0.9245</td>
<td>0.9066</td>
<td>0.9227</td>
<td>0.9147</td>
</tr>
<tr>
<td>0.9338</td>
<td>0.9072</td>
<td>0.9184</td>
<td>0.9104</td>
</tr>
</tbody>
</table>

P_{PR} and P_{BN} columns show results of calculation using Tikhonov and nonnegative regularization, P_{av} is the calculated average porosity.