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Principles of Optimization of Structures Against an Impact

Andrej Cherkaev∗, Elena Cherkaev†, Seubpong Leelavanichkul‡

September 15, 2011

Abstract

We describe a macro- and micro-behavior of damageable structures. Damage is understood
as a process of irreversible phase transition from an initial to a damaged state. An unstructured
material can absorb energy until it melts. However, a tiny portion of this energy yields to a
construction’s disintegration due to instability of the damage that leads to energy concentration.
Appearance of concentrated damage zones, such as cracks or delaminating, destroys the con-
struction. The remains of the disintegrated construction can still absorb large amount of energy.
The goal of a rational design is to maximally use the energy absorption ability of a damageable
material. We propose a concept of a replaceable protective structure design. Such structure
should dissipate maximum energy, be able to spread energy of damage, and the damage process
should be as stable as possible. The absorption rate and rate of damage propagation are times
amplified by waiting-link structures that we describe below.

1 Preliminaries

1.1 Protective structures

We investigate a problem of propagation of structural damage, formulate principles of optimization
of the impact-protecting structures, and present models of a protective structure with improved
characteristics. The designed structures must sustain a sudden impact: they absorb the energy
while keep their structural integrity. The goal is in contrast with the conventional optimal design
of maximally stiff constructions that are designed to be loaded by a given static load. Commonly
used protective devices include car bumpers, helmets, tempered glass, climbing screamers, and
woven baskets of hot balloons, see Figure 1.

These very different constructions are all designed to be damaged or destroyed in a collision
saving the protected object. These constructions might be used only once, they absorb the collision
(impact) energy shielding the protected object and keeping the structural integrity. Both features
are equally important. In a collision, a properly designed bumper will be badly damaged, thereby
absorbing the energy of impact and saving the vehicle and its passengers. A strong and stiff bumper
that stays undamaged while the car is ruined does not fit its purpose. Likewise, an easily damageable
bumper does not fit it because it does not absorb enough energy. An optimally designed structure
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realizes a familiar recommendation of defensive driving instructions “Choose to hit something that
will give way (such as bush or shrubs) rather than something hard”.

The energy density determines the capability of a structure to withstand dynamical loading.
In most structures, due to a highly uneven distribution of energy density, localized yielding occurs
at a particular location while the total energy associated with fracture may be relatively small. To
increase stability, a concept of a bistability has been introduced [1]. In bistable structures, yielding
propagates in a larger volume, thus increasing the total fracture energy. A bistable structure may
be created by forming a chain or lattice of bistable structural elements [2-4]. Multiple regions
of such structure exhibit yielding prior to ultimate failure. Thus, the bistable structures allow
for the delocalization of yielding. Based on results of our previous research dealing with the
bistable structures and their applications, the present paper formulates optimization principles
for constructions and structures designed to sustain a damaging impact.

1.2 Elements and features of an impact resistive structure

An amorphous or crystalline material with only micron-range order can absorb energy until it fails
locally. The lack of longer-range microstructural order precludes distributing the damage away
from a concentrated loading zone. Energy concentration leads to instabilities, such as cracking
or delamination, which destroy the structural integrity of a protective structure made from such
material. In all unstructured materials, the stress rate decreases with increasing strain due to
development of imperfections, opening of micro-cracks, dislocation concentration, amongst other
mechanisms. These phenomenona lead to stress concentrations that eventually destroy the material
sample.

The stress concentration can be reduced by means of bistable structures. A simple bistable
structure assembly consists of two roughly parallel brittle-elastic or elastic-plastic components,
one of which is longer than the other [1, 2, 3]. When the shorter “sacrificial” element fails
(indicated as “first failure” in Fig. 2), the load is assumed by the “waiting element” that was initially
inactive. Unlike conventional structures, the bistable structure transforms the energy of an impact
into directed traveling waves that dissipate energy throughout a larger domain. Delocalization of
damage is achieved by allowing partial internal failure to precede ultimate failure. Due to their
morphology, bistable structures become stiffer and stronger when damaged. Such structures would
evenly distribute the stress and will be stable even when partially destroyed. Structures with
inner instabilities, creating multiple inner breakages that lead to stable structural transformation,
transport damage away from impacted zone. As a result, the structure can sustain large deformation

(a) (b) (c) (d) (e)

Figure 1: Structures that absorb energy and become partially damaged, but maintain structural
integrity. (a) Lattice with redundant load paths. (b) Tube and cylinder. (c) Tube and cone. (d)
Multilayer structure. (e) Structure with helices that mimics protein.

2

Continuum Models and Discrete Systems Symposia (CMDS-12) IOP Publishing
Journal of Physics: Conference Series 319 (2011) 012021 doi:10.1088/1742-6596/319/1/012021

2



sacrificial element

waiting element

displacement

first failure

lo
ad

Figure 2: A force-displacement response and a conceptual visualization of a bistable link assembly

without total destruction.

1.3 Lattices: Stages of structural damage

We study damage of lattice structures that consist of a number of connected rods. A simple frame in
Figure 3 illustrates a cascade of breakages. We assume that the rods in the frame are brittle-elastic:
the elongation growths with the stress and when it reaches a threshold, the rod fails. Unlike chains
with sequentially joined links, lattices are not broken when one or several links fail. We assume
that a frame from five breakable rods A, B, C, D, and E is attached to a vertical support and is
loaded by a force F that is applied to the end of rod E, as shown in Figure 3.

The failure of the structure passes through the following stages:

1. Initially, all rods are stressed by a loading F .

2. When the magnitude of F increases, rod A is breaks.Then, rod B assumes the load; rods C
and D become inactive, they form a waiting link. The equilibrium remains locally stable but
the stiffness of the structure decreases.

3. When rod B fails next, the structure loses its equilibrium and moves to a new equilibrium
position that corresponds to straight aligning of rods C and D, which now become active. In
the new equilibrium position, the stiffness may increase.

4. Next, one of rods C or D (say, rod C) breaks and the structure moves to another equilibrium
position.

5. Finally, rod E breaks and the force is no longer supported by a structure.

Notice, that all rods but D are broken before the load is relieved. The percentage of broken rods
shows effectiveness of the support because each breakage absorbs some energy.

Generally, a sequence of breakage of a loaded structure includes: (a) breaks within an equilib-
rium position, (b) transition from one equilibrium to another one with some waiting links being
activated, and (c) a complete breakage when the load is no longer supported by a structure. Step
(a) correspond to damage within a stiff structure. An equilibrium of a loaded structure or a sub-
structure is called stiff if it corresponds to a local minimum of the energy, that is no node can move
without elongating of at least one link and change the energy balance. The number of degrees of
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(a) (b)

(c) (d)

Figure 3: Stages of structural failure

freedom of the nodes of a n-nodes structure is equal to 3n, out of which 6 degrees correspond to
motion of the structure as a solid. The number of active (stressed) links may exceed or be equal
to the number of 3n − 6 of degrees of freedom of a deformation. In this case, the equilibrium
is stiff; moreover, if several active links are removed (broken), the structure remains stiff. When
the damaged links are removed, remaining active links redistribute the load, and inactive links are
not activated. This process can be analyzed by linearized equilibrium equations. When a certain
number of links is removed, the structure loses the stiffness (Step (b)) and moves from the equilib-
rium point. The motion stops when some previously inactive waiting links are activated and the
structure assumes a new equilibrium position. The process repeats, until the structure fails and
stops to resist the load. The analysis of this process requires consideration of dynamics since the
transitions between equilibria correspond to a significant dynamic load factor that could result in
further damages that are accompanied by intensive wave generation.

Any addition of new rods, straight or curved, increases the resistance. Additional curved rods
may either join the neighboring nodes, as in chains with waiting links, or they may join any two
nodes in the structure. The problem of optimal position of additional rods is open.

1.4 Dynamics of bistable lattices

Strong elastic waves and waves of damage propagate throughout the bistable structures, reflecting
from its boundaries and interfering with each other. This process leads to a high concentration of
stresses that destroys the construction. On the other hand, the elastic waves can be redirected,
thereby sending energy away from the zone of contact as it is discussed for the case of lattice shown
below in Fig. 10 in Section 3. Initiation and redirection of waves can be effectively done by bistable
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structures. Because of their local instabilities, the structures are able to absorb the kinetic energy
of an impact by exciting intensive waves which more evenly distribute the partial damage and relax
the stress by allowing for large local deformations of the elements. Stressed bistable cellular lattices
naturally excite and transmit waves of damage, acting as a domino train.

Waves in locally unstable systems are controllable. The possibility to redirect the transition
wave in elongated strip-like structures is demonstrated in [5]. Depending on structural parameters,
the damage may either start at the impacted end and propagate toward the opposite end where
the structure is fasten, or it may start at the fastened end and propagate toward the end where
the force is applied, or two transition waves may be initiated at both ends simultaneously [4]. The
process is controlled by parameters of the structure; optimally designed structures generate waves
along the protective plate orthogonal to the direction of the impact.

An optimized structure should trigger stress waves propagation and thereby spread the stress
more evenly; it must also contain multiple absorbers. This can be achieved by the use of a composite
with a special structure made of a strong frame, and an absorbing filler material. The optimization
strategy requires a proper choice of design parameters. They are: the shape of the whole protective
construction, location of beams or frames and waiting links, and the choice of materials.

1.5 Analytic solutions for dynamics of bistable chains and lattices

Analytic solution of the problem of dynamics of bistable chains and lattices was derived based on
ideas developed in [5, 6] for modeling of propagation of the cracks. Bistable-bond chain model was
analyzed in [4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In a bistable chain, the transition wave is ac-
companied by a significant dissipation due to the excitation of structure-associated high-frequency
waves. The analytical derivation of the solution is presented in detail in [9, 15]. The work [15]
also deals with a more complicated case of non-parallel branches of the two-branched strain-stress
constitutive relation. In this case, the Wiener-Hopf technique is exploited to derive the solution.
Analytically calculated speed of the transition wave [15] for a cellular structure with bonds charac-
terized by a bistable constitutive model, was compared with numerically computed speed estimates.
This comparison is shown in Figure 4(b). A more complex problem of breakable two-dimensional
structure with waiting links was numerically investigated in [17, 18]. Bistable chain from elastic-
plastic material was studied in [3]. Analytical solution of the problem of propagation of plane and
crack-like transition waves in two-dimensional lattices was developed in [2].

Partial failure of a cellular structure propagates as a cascade of phase transitions. The dynamics
of discrete mass-spring system with ”phase transition” of damage is modeled by a system with radial
forces:

mkük =
∑

j∈⌋k

Fkj(‖uk − uj‖)ekj , ekj =
uk − uj

‖uk − uj‖
(1)

Breakage is modeled by assumption that springs instantly change their stiffness and equilibrium
lengths when the elongations reach given thresholds,

Fkj(z) =

{

Ckj(z − zeq) if sactificial link is unbroken
C ′

kj(z − zeq − zslack) if sacrificial link is broken
(2)

Here, we assume that waiting links are not broken. The solution can be found if in addition a certain
character of transition is assumed, such as periodicity (in reversible transition), a constant speed
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of the transition wave, or a randomness. Formally, we may replace Fkj(z) by a time-dependent
function

F̃kj(z, t, ttrans
kj ) =

{

Ckj(z − zeq) if t ≤ ttrans
kj

C ′
kj(z − zeq − zslack) if t > ttrans

kj

(3)

where ttrans
kj is the time of transition that depends on assumed transitional parameters such as the

wave’s speed. We assign these parameters, and run the simulations adjusting them to the transition
conditions

ttrans
kj : ‖uk(t

trans
kj ) − uj(t

trans
kj )‖ = zthreshold (4)

For example, the dynamics of a mass-spring chain with damageable links is modeled [16] under
assumption that springs instantly change their equilibrium lengths when the elongations reach given
thresholds. Between these instances, the springs are linear and a motion of masses is described by
a system of linear differential equations. Because of similarity in motion of all masses,

uk(t) = uk−1(t − τ) + η ∀k,

where η is an equilibrium distance, it is enough to consider position u of mass m0 in the period
t ∈ (0, τ):

m0ü(t) = C [u(t + τ) − 2u(t) + u(t − τ)] − L
[

H(t) − H
(

t −
τ

2

)]

. (5)

where C is stiffness and L is the relaxation parameter. This system can be solved by Fourier
transform. To close the system, it remains to solve turn-on turn off condition to determine the
wave’s speed

τi : ‖u1(τi) − u0(τi)‖ = zthreshold (6)

In [15], the problem is analyzed and the speed of the transitional wave is computed. It depends
on the load applied at an infinitely distant point, see Figure 4(b). The calculation was verified by
simulation of the transitional wave in a spring-mass system and measuring its speed, see Figure
4(a). The points obtained by numerical simulation are marked at the analytically calculated speed
curve in Figure 4(b).

2 Model of an impact resistive bistable structure

Transmission and redirection of stress waves can be achieved and optimized through use of the
bistable design. The local instabilities excite intensive waves that evenly distribute the “partial
damage” to allow large local deformations without fully damaging the global protective system
(see Fig. 5).

2.1 One dimensional constitutive material model

The constitutive relation for a one-dimensional elastic-brittle breakable specimen is modeled as

σ = (1 − c)Dε, ε = ln

(

∆L

L

)

(7)

where D is the material modulus, c is a damage parameter that takes the value of zero (undamaged
specimen) or one (damaged specimen), L is the undeformed length, and ∆L is the elongation.
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Figure 4: (a) Numerically simulated wave of transition in a 32-cell chain. (b) Analytically calculated
speed of the transition wave compared with numerical estimates shown by stars.
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Figure 5: Finite element simulations of a bistable versus a conventional chain having identical
mass and subjected to the same loading (displacement control). The simulation used basic elastic-
plastic material model. The area under the curve represents the amount of energy absorbed by the
structure. This particular example shows that the bistable chain absorbed approximately 4.5 times
the amount of energy the conventional chain absorbed before failure.
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For numerical simulation, we use the discretized model. The axial stress at time step n + 1 is
computed through stress σn at the previous time step n.

σn+1 = σn + D
[

(1 − cn+1)εn+1 − (1 − cn)εn
]

, (8)

where cn control the status of the links at time step n; if cn = 0, the link is undamaged, if cn = 1,
it is broken, and 0 < cn < 1 corresponds to a partially damaged link. Evolution of cn is described
by the equation

cn+1 =











0 if εtotal ≤ εc and cn 6= 1

cn + ċ∆t if εtotal ≥ εc and cn < 1

1 otherwise,

(9)

where εc is the critical strain and ċ is the speed of damage.
In a bistable assembly, the stress is expressed as a sum of the stresses in the sacrificial and

waiting elements,

σn+1 = σn+1
s + σn+1

w , (10)

where subscripts s and w denote the sacrificial and waiting links, respectively. To obtain the the
bistable response shown in Fig. 2, the stress in the sacrificial element is evaluated using Eq. (8).
The waiting element is initially inactive and is activated after the strain in the bistable assembly
reaches a predefined value, εinit. The stress in the waiting element is computed using

σn+1 =
[

σn + D
(

(1 − cn+1)εn+1 − (1 − cn)εn
)]

× b(εinit). (11)

where

b(εinit)
n+1 =

{

0 if εw ≤ εinit and b(εinit)
n 6= 1

1 otherwise,
(12)

Before failure of the sacrificial element, damage parameter cs is zero, therefore σw = 0 and
σs > 0. When the sacrificial element fails, σs becomes zero (see Eq. (8)) and the waiting element
picks up the load (see Eq. (11)) σw > 0. When the deformation reaches a critical value εc, waiting
element fails as well. This material model is used in the finite element simulations below. The
damage speed ċ plays an important role, the effectiveness of the bistable assembly depends on this
value relative to the speed of the impact.

3 Numerical examples

The numerical simulations are carried out using LS-Dyna [19] with the custom material model
presented above. The structure is assembled using truss elements.

3.1 Example 1: A rigid ball impacting a net

Using the model in Eqs. 7 to 12, we have performed 3-D simulations of a rigid body impacting
two-dimensional lattices, one assembled from conventional links and another one assembled from
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Table 1: Sacrificial element’s parameters

Parameter Value

Young modulus, Es 120 GPa
Poisson’s ratio, ν12s 0.36
Length, Ls 1.0 m
Cross-sectional area, As 0.01 m2

Critical strain, εcs 0.008

Table 2: Waiting element’s parameters

Parameter Value

Young modulus, Ew 120 GPa
Poisson’s ratio, ν12w 0.36
Length, Lw 1.008 m
Cross-sectional area, Aw 0.0198 m2

Critical strain, εcw 0.008
(after fully stretched)

bistable links. These two lattice systems were given identical areal densities. Under various loading
conditions, the exit velocity, the kinetic energy of the impacting ball, and distribution of damage
and stress in the conventional and bistable nets are compared. It is assumed that the ball impacts
the lattice perpendicularly. The model parameters are given in Table 1 and 2 for the simulation
time of t = 0.5 s. The parameters are chosen so that the transition to the waiting element is
sufficiently fast to simulate the response in Fig. 2.

A 100mx100m net was constructed and constrained in all direction along the edges. The net is
constructed using 23539 truss elements, and contains 8404 nodes. Here we use the general three-
dimensional segment-based penalty contact algorithm [19] with the lattice containing the slave
nodes and the ball containing master nodes. No contact friction is accounted for. The results are
compared with a similar net from conventional links of the same mass as the sacrificial and waiting
elements together; they are made from the same material.

The comparison of the impact resistance is illustrated in Fig. 6. Moreover, as the rigid body
penetrates the lattice, cracks are formed in the absence of bistable links, but are avoided when
using bistable links. Based on this observation, further investigation will help us to understand the
mechanism of damage waves as well as to develop a technique that allows to control these waves
in multilevel lattice structures. For example, the path of the damage propagation, or branching
of the damage zone in a desired direction, can be controlled through introduction of weak zones
or by optimizing the orientation or density of the bistable links. Thus, it is possible to design a
”topological trap” for the arrest of the damage propagation.

The results demonstrated in Fig. 6 are based on the constitutive model described in Eqs. 7
to 12, which crudely accounts for damage and eliminates the need of sacrificial element deletion.
The model does not have the capability to replace or rearrange the elements when the structure
is subjected to different loading conditions during its life cycle. However, the presented results
already demonstrate the potential of the bistable link concept.

Effectiveness To evaluate the effectiveness, the effective value R is the ratio of the initial impact
velocity, v (t0), to the exit velocity, v (tfinal) [17]:

R =
v (tfinal)

v (t0)
, (13)
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Conventional Lattice, projectile exit velocity = 0.23v0

Bistable Lattice, projectile exit velocity = -0.20v0

t = t0 t = t1 t = t2 t = t3 t = t4

Figure 6: Finite element simulations of lattices impacted by a rigid body. The conventional (top)
and the bistable (bottom) lattices have the same total mass, are made of the same material, and
are subjected to the same boundary conditions and impact loading. The simulations show that,
under the same conditions, the bistable lattice captures and rejects the impacting ball, while the
conventional lattice fails to resist the impact.
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Figure 7: (a)-(c) Comparison of the ball velocity at t = 0.5 s. The positive velocity implies that the
ball bounces off the net, while the negative velocity indicates that the ball continues to penetrate
the net. (d) Effectiveness ratio of the bistable net under an impact of various masses. The net is
most effective against impact when the m ≤ 6231 kg and vimpact ≤ 150 m/s.
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Figure 8: (a) Kinetic energy. Mass = 6231 kg and impact velocity = 150 m/s. (b) Displacement
along the z-direction; mass = 6231 kg and impact velocity = 150 m/s.

where t0 and tfinal are the initial and the final moments of the observation, respectively. The vari-
ation of impulse of the ball R shows how much of it is transformed to the motion of structural
elements. Parameter R evaluates the structure’s performance using the impacting ball as a mea-
suring device without considering the energy dissipated in each element of the structure; it does
not vary when the ball is not in contact with the structure.

For the chosen configuration, at lower mass (3116 kg), the ball is rejected and neither conven-
tional nor bistable design is damaged. When the speed of the impact is moderate (see Fig. 7),
the bistable structure is more effective. It stops heavier balls or decreases the speed of penetrating
ones. The bistable net has the most advantage over the conventional net when the initial velocity
of the ball is 150 m/s and the mass of the ball is 6231 kg. At this combination, the ball is bounced
off the bistable net, while the conventional net is penetrated, see Fig. 7d. In addition, Fig. 8 shows
that more energy is dissipated by the bistable net than the conventional net. However, at high
speed both structures behave similarly. For example, when the ball’s mass is 9347 kg and its speed
is above 175 m/s, the ball penetrates both nets and have similar exit velocity.

Damage distribution We observe that a conventional net is destroyed sooner than the one with
waiting elements, and it requires less energy to be penetrated. The larger energy dissipation is
achieved by delocalization of damage. The damage in the conventional net (see Fig. 9) concentrates
in the impact area. The damage in the bistable net occurs by the failure of sacrificial elements and
it is more distributed (see Fig. 10). Notice that some sacrificial elements located far away from the
impact zone are destroyed while others are not. The damaged links are clustered in small regions
scattered throughout the net.

The dynamics of the damage and failure of the net can be viewed as a series of phase transitions.
After each break, the network changes its elastic properties and its equilibrium position. In con-
trast with the conventional structure, the bistable structure may become stronger after sacrificial
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(a) Conventional net (b) Bistable net

Figure 9: Damage at t = 0.5 s.: (a) The completely destroyed sacrificial elements are shown in red
(2435 damaged links), while the completely damaged waiting element are hidden from view. There
are no partially damaged links in this example because the damage speed ċ is set to the same value
as the time step size used in the simulation. (b) The completely destroyed links (284 links) are
hidden from view.

(a) Impact speed = 50 m/s 1700 damaged
sacrificial elements

(b) Impact speed = 250 m/s, 9161 damaged
sacrificial elements

Figure 10: Damage at t = 1.0 s.: (a) These figures illustrate the effect of the waiting elements
when the net is subjected to slower and faster impacts having initial kinetic energy of 70×106 N·m
(similar to the case shown in Fig. 9. The number of the partially damaged links increases as the
speed of the projectile decreases.
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(a) Conventional net (b) Bistable net

Figure 11: Penetration of a 9347 kg rigid ball with initial velocity of 175 m/s, t = 0.3s. The phase
transition leads to a pseudo-plastic response of the net.

elements break. After a sacrificial element breaks, the slackness of the waiting element causes the
elastic wave to travel away which helps to spread the damage across the structure.

As the ball penetrates through the net, cracks are formed in the conventional net (see Fig. 11),
while no crack formation is observed in the bistable net. Crack is stopped in the bistable net
because bistability leads to stress delocalization. Notice that bistable nets, made from an elastic-
brittle material, show large but stable pseudo-plastic strains and thus increase the resistivity.

4 Damage tracking and optimization of bistable structures

The resistance against fracture and yielding of a protective lattice of bistable links can be optimized
by material redistributing, i.e., reinforcing the overloaded links at the expense of underloaded ones.
An optimization algorithm can be formulated similar to the approach such as those in [20, 21].
The main challenge of the optimization problem is the time dependent loading and structural
variation due to damage, which leads to high sensitivity of the design variables as illustrated in
the simulations of the rigid body impacting a bistable lattice discussed earlier (Fig. 10). These
figures show that the effectiveness of the design (number of fully damaged sacrificial links) at a
given geometry depends greatly on the speed of the impact.

In a chain, the number of partially damaged links is related to the absorbed energy. The load
carrying capacity of the chain is lost as soon as one link in the chain is broken. On the contrary, the
triangular lattice can still resist concentrated loads even if some of the links are completely broken.
We use two basic criteria to compare the state of the structure before and after the collision: (1)
The percentage of partially damaged links, and (2) The percentage of destroyed links. The first
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(a) (b)

t

tt

(c)

Figure 12: (a) The lattice consists of three families of parallel links α, β, and γ; (b) Example of
lattice with damaged links (dashed lines); and (c) Tangent vectors to the links’ families.

number shows how effectively the partial damage is spread, and the second one shows how badly
the structure is damaged. Ideally, we wish to have a structure in which all links are partially
damaged, but none is completely destroyed. The number of destroyed links is a rough overall
quality criterion, but it ignores a significant factor - the distribution and orientation of the broken
links. To describe various configurations of broken links, we introduce a “damage tensor” that can
distinguish partial damage and quantify damage texture based on which links are broken [22, 23].
For example, consider an equilateral triangular lattice that consists of three families of parallel links
α, β, and γ with tangent vectors tα, tβ, tγ , respectively (see Fig. 12). In this case, we can construct
the damage tensor D as follows:

1. In a reference configuration, select a domain Ω that is larger than distance between nodes
(i.e., a domain containing many nodes),

2. Count the number of links lα, lβ and lγ that contain at least one node in Ω

3. Count the number of broken links, bα, bβ and bγ in (Fig. 12b) and introduce the relative
directional damage, pα, pβ and pγ

pα =
bα

lα
, pβ =

bβ

lβ
, pγ =

bγ

lγ
. (14)

4. Finally, the damage tensor D(Ω) can be formulated using

D(Ω) = pαtα ⊗ tα + pβtβ ⊗ tβ + pγtγ ⊗ tγ . (15)

Likewise, damage tensors can be constructed for the sacrificial and the waiting elements. The
dimensionless damage tensor D(Ω) allows the characterization of an average damage in a region Ω
and hence the average irreversible deformation in that region. It can be used for an intermediate
scale description of the damage, which in turn would be useful in optimization of link morphology
as well as visualization using any standard methods for displaying tensor fields [24].
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