Math
5470/6440
Nonlinear Dynamics and Chaos
T H 10:45 am - 12:05 pm WEB
L112
|

|
Text: Nonlinear Dynamics and Chaos
by
Steven Strogatz
Instructor: Prof. Elena Cherkaev
Office: LCB 206 ph: 581-7315 email:
elena@math.utah.edu
Office hours: M 2-3pm and by appointment
|
Syllabus
Feb 10 : Midterm 1 - Chapters 2, 3,
4.
Sample test (last year exam)
Solutions to selected hw problems: Ch2, Ch3-4
March 26 : Midterm 2 - Chapters 5, 6, 7,
8 (1-2). Sample test (last year exam)
Solutions to selected hw problems: Ch6,
Ch7-8
---------------------------------------------------------------------------------------------
Assigned Homework Problems:
---------------------------------------------------------------------------------------------
Jan 10:
Ex 2.2
# 3, 4, 6, 7, 8, 12.
Ex 2.3 2, 3, 4 . Ex
2.4 # 2,
4, 7, 8,
9
---------------------------------------------------------------------------------------------
Jan 15:
Ex 2.7
# 1, 2, 4, 6,
7. Ex 3.1 #
1, 3
Jan 17: Ex 3.2 #
2, 4,
6. Ex 3.3 #
1, 2. Ex
3.4 #
3, 8, 14,
15,
16
---------------------------------------------------------------------------------------------
Jan 22:
Ex 3.6
# 2, 3, 6.
Jan 24:
Ex
3.7
# 3, 4, 5, 6. Ex 4.1
# 2, 3,
4, 8.
---------------------------------------------------------------------------------------------
Jan 29: Ex 4.2
# 1, 2, 3. Ex 4.3
# 1, 2,
3, 5, 7 ;
Ex
4.5 # 1, 3;
Steven Strogatz on synchronization
Jan 31:
Ex
5.1 # 9, 10, 11
---------------------------------------------------------------------------------------------
Feb 12:
Ex
5.2 # 2,
7, 9, 13; Ex
5.3 # 2-6
Feb 14:
Ex
6.1 # 1, 4, 6;
Ex 6.2 # 2; Ex 6.3
# 2, 3
---------------------------------------------------------------------------------------------
Feb 19:
Ex 6.3
#
14, 15
Feb 21:
Ex 6.4
# 1,
2, 3; Ex 6.5
# 1, 8, 9
---------------------------------------------------------------------------------------------
Feb 26: Ex 6.5
# 2, 3,
4; Ex 6.8
# 6,
7, 8 , 11, 13
Feb 28:
---------------------------------------------------------------------------------------------
Mar 5:
Ex 7.1 # 1-5,
7, 8; Ex 7.2 #
1-3, 6, 9
Mar 7:
Ex 7.3
# 6, 7; Ex
7.5 # 3, 4
---------------------------------------------------------------------------------------------
----
Spring break
March 10-17
-----
---------------------------------------------------------------------------------------------
Mar 19:
Ex 8.1 # 1-4,
5, 11 ; Ex
8.2 # 1, 2, 8
Mar 21:
Ex
8.3 # 1;
Ex
8.4 # 1, 2;
---------------------------------------------------------------------------------------------
Mar 26:
Mar 28:
Ex
8.6 # 1, 3 ; Ex
8.7 # 1, 3,
9
---------------------------------------------------------------------------------------------
Apr 2:
Ex 9.1 # 4; 9.2 # 3, 6
Apr 4:
Ex 9.3 # 1,
2-7,
9-10; Ex 9.4 # 2. Play with lorenz attractor in maple
---------------------------------------------------------------------------------------------
Apr 9:
Apr 11:
---------------------------------------------------------------------------------------------
Apr 16:
Apr
18:
---------------------------------------------------------------------------------------------
Apr 23:
Apr
25:
---------------------------------------------------------------------------------------------
Course
description Chaos is
everywhere around us from fluid flow and the
weather forecast to the stock exchange and striking geometric images.
The
theory of nonlinear dynamical systems uses bifurcations, attractors and
fractals to describe the chaotic behavior of real world things. The
course
gives an introduction to chaotic motions, strange attractors, fractal
geometry.
The emphasis of the course is on applications:
- Mechanical vibrations
- Chemical oscillators
- Superconducting circuits
- Insects outbreaks
- Genetic control systems
- Chaotic waterwheels
- Chaotic communications
|

|
The course is addressed
to senior
undergraduate and graduate students in mathematics, science and
engineering. Prerequisites: Calculus and Differential Equations.
Tentative Course Schedule:
Part I: Jan 8 - Jan
31 -- Flows on the line: Jan 8-15. Bifurcations:
Jan 17-24. Flows on the circle: Jan 29-Jan 31.
Part II: Feb 5 - Mar
7 -- Linear systems: Feb 5-7. Phase plane: Feb 12-14.
Limit Cycles: Feb 19-26. Bifurcations: Feb 28-Mar 7.
Part III: Mar 19
- Apr 23
-- Lorentz equations:
Mar 19-26. 1D Iterated maps: Mar 28-Apr 4. Fractals:
Apr 9-16. Strange attractors: Apr 18-23.
Exams: There will be three midterms and an optional
project and/or final exam. Tentative dates for the midterms: Feb
7;
Mar 21; Apr 23.
Final test: Tuesday, April 30,
10:30 am -- 12:30 pm
Grading: The grade will
be calculated as an average of the midterms and the project and/or
final.
Holidays: Martin Luther King Jr. Day:
Monday, January 21; Presidents' Day: Monday, February
18.
Spring break: March
10-17.
Computer
lab set up: Maple
example (slope field)
Maple: Lorenz
attractor
For Matlab, download dfield8 and pplane8 from John C. Polking's
website:
http://math.rice.edu/~dfield/index.html#8.0
Java simulator: http://chaos.wlu.edu/106/programs/lorenzdes.html
ADA statement: The
American with Disabilities Act requires that
reasonable accommodations be provided for students with physical,
sensory,
cognitive, systemic, and
learning, and psychiatric disabilities. Please contact me
at the beginning of the semester to discuss any such accommodations for
the
course.