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lterated Function Systems

The fractals are constructed using a fixed geometric replacement
rule: Cantor set, Sierpinski carpet or gasket, Peano curve, Koch

snowflake, Menger sponge.

Karl Weierstrass (1872): Nondifferentiable function

Georg Cantor (1883): Cantor set m
Giuseppe Peano (1890), David Hilbert (1891): L

T Space filling curves ELE%

mﬁmm Helge Von Koch (1904): Koch snowflake
Waclaw Sierpinski (1915): Sierpinski triangle and carpet
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Random Fractals

Random fractals can be generated by stochastic rather than
deterministic processes, for example, trajectories of the
Brownian motion, fractal landscapes and random trees.




Fractals as Attractors of Nonlinear Dynamical
Systems

Fractals can be generated as strange attractors of Nonlinear
Dynamical Systems, for example, attractor of trajectories of
the Lorenz dynamical system, Rossler attractor, attractor of
Ueda system.
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Escape-time fractals

Escape-time fractals — These are based on sensitive
dependence of the trajectories on the starting point or on
initial conditions.

Examples of this type are the Julia and Mandelbrot sets (Gaston
Julia, Pierre Fatou, Benoit Mandelbrot), and Newton fractal.

Newtons Method (25)
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Newton fractal

Julia set



Forthcoming Book: Benoit Mandelbrot, A Life in Many

Dimensions

Contents:
Introduction — Benoit Mandelbrot: Nor Does Lightning Travel in a Straight Line (M Frame)

Fractals in Mathematics — Chapters by Michael Barnsley, Julien Barral, Kenneth Falconer,
Hillel Furstenberg, Stephane Jaffard, Michael Lapidus, Jacques Peyriere & Murad Taqqu

Fractals in Physics — Chapters by Amon Aharony, Bernard Sapoval, Michael Shlesinger,
Katepalli Sreenivasan & Bruce West

Fractals in Computer Science — Chapters by Henry Kaufman & Ken Musgrave
Fractals in Engineering — Chapters by Nathan Cohen & Marc-Olivier Coppens
Fractals in Finance — Chapters by Martin Shubik & Nassim Taleb

Fractals in Art — Chapters by Javier Barrallo, Ron Eglash & Rhonda Roland Shearer
Fractals in History — Chapter by John Gaddis

Fractals in Architecture — Chapter by Emer O'Daly

Fractals in Physiology — Chapter by Ewald Weibel

Fractals in Education — Chapters by Harlan Brothers & Nial Neger

Fractals in Music — Chapter by Charles Wuorinen

Fractals in Film — Chapter by Nigel Lesmoir-Gordon

Fractals in Comedy — Chapter by Demetri Martin



Cantor Set
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On each iteration step, delete middle third of each interval.

Properties:

C has structure at arbitrary small scales;
Cis self-similar;

The dimension of C is not integer;

C has measure zero;

C consists of uncountably many points.



Cantor Set: Measure zero

1, 5
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2000 279 i 2/3 7/19 8/9 1
Sum up lengths of
1+2i+4i+ _ 1
the deleted sets: g Teg Tt 2
31-2/3

Measure (length) of the deleted set =1
Measure of Cis zero.



Cantor Set: Continuum of points

: a, a
Expand x in base-3: x<[0,1] X=2+3§+3§

+... , a,€{0,12}

0... A 2...

Points in the Cantor set do not have 1 in the base-3 representation

One-to-one correspondence with base-2 representation of the
points in the unit interval

—  Cardinality of Cantor set is continuum !



Cantor set

Cantor set can be generated iteratively using two transformations:

1 1. 2
f,(x)==x, L(X)==x+—=
1(¥) =3 (X) =X+

Construct a sequence of closed nested intervals:
.ol o, >..ol >..
1, =[0,1]
I, =TIV f,(1g) =l Uly
I, =1,(1)w f,(1) = T,(le U lg) U T,(1ee U ly)
= logo Y lo10 Y loor Y lous

Affine transformationsin R':
f(x)=ax+h,
a Isscaling coeff., b istranslation or shift



Cantor Set: Continuum of points
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Cantor set is equivalent to the set of
all possible sequences of 0 and 1



Affine transformations in 2D

2D affine transformation has the form:

AC R
W(X) =w = + = A X+t
X, c d){x, f

Matrix A can be written as:
A (a bj - (rl cos@, —r,sin ezj
c d Lsing, r,cosé,
Examples: Scaling, shift, rotation, reflection.

Affine transformation consists of a linear transformation A
followed by a translation t.
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Affine transformations in 2D

How to find w ?
Use: w(Red_triangle) = Blue_triangle
ﬂE bk :W(ak), k:]., 2,3

W RN

Solve for a, b, ¢ d, e, .

b

o

a3l




Metric Space

A metric space (X, d) is a space X together with a real-valued
function d: Xx X ->R which measures the distance
between pairs of pts xand y €X.

A metric space X is complete if every Cauchy sequence has a
limit in X.

Forward iterates of f are transformations

f": X — X defined by
f0(x) =X,
f(x) = f(x),
fx)=fof"(X)=f(f"(x)), n=0,12,..



Contraction Mapping

A transformation f : X — X ona metricspace (X,d)

IS a contraction mapping if there is a constant
0<s<1 suchthat d(f(x),f(y))<sd(xYy)

S IS contractivity factor for f.

The Contraction Mapping Thm :

Let f bea contraction mappingon acomplete

metricspace (X,d). Then f has exactlyone fixed point x.,
and for any x, thesequenceof iterates {f"(x):n=0,1, 2,...}
convergesto X; :

{f"(X)}>x;as n—>w



Contraction Mapping on the Space of Fractals

Let (X,d) beametricspace, and let
(H (X), h(d)) be the corresponding space of nonempty
compactsubsetsof X with Hausdorff metric h(d).

Let w: X — X bea contraction mapping on the metric
space (X,d) with contractivity factor s.
Then,w:H(X)— H(X) defined by
w(B) ={w(x): x € B}
IS a contraction mappingon (H (X), h(d))
with contractivity factor s.



Iterated Function System

IFS: An Iterated Function System consists of
a complete metricspace (X,d)
together with a finite set of contraction mappings w, :
{X; w, n=1..N}
with contractivity factor s, s=max{s,, n=1,...N}
W (B) =w,(B) uw,(B)...ow,(B)
IS a contraction mapping on the space H.
Its unique fixed point satisfies
A=W (A)=w,(A)uw,(A)..uw, (A),
A=1limW™(B) as n— o forany B eH.
Ais attractor of IFS.



Example: Sierpinski Triangle

W (B) = w,(B) Uw, (B) Uw,(B)
Calculate iterations of W :

A =W"(A), n=12,..

05 0
Wl(x){o o.5j£>)<(lj

05 0Y(x) (0)

W, (X) = +
() (o 05)\x,) 105,

05 0)(x ) (0.5)

1
W, (X) = +
3( ) (O 0'5/ \X2/) \ 0 J




Deterministic and Random Algorithms

Deterministic fractal :  1FS :{X;w,,w,,..w, }
W(B) =w,(B) ww,(B) uw,(B)

Choose a compactset A,. Compute iteratively
A =W"(A), n=12,..

Sequence of iterates converges to the attractor
of IFS--deterministic fractal.

Random Iteration Algorithm: " Apply w; with probability p,"

Start with  x, € X;

Choose recursively x. ., e{w,(X,), W, (X, ),...wy (X,)}
with probability p; .



3D IFSs and 3D Fern

Instead of a 2x2 real matrix A and a column vector

t (*,*), we have a 3x3 real matrix A and a column vector t (*,*,*)
for a 3D IFS. Again, it can be expressed as w(x)= Ax+t.

As an example of 3D, we introduce a 3D Fern, which is the
attractor of an IFS of affine maps in 3D.




3D Fern

The IFS for the 3D Fern

0O 0 O 0
w,(x)={0 0.18 0x+|0]|,

0O 0 O 0
08 0 0 0

w,(x)=| 0 085 0.1 [x+|1.6]
0 -01 0.85 0

02 02 O 0
W,(x)=10.2 0.2 0 |x+|0.8],
0O 0 03 0

-02 02 O 0
w,(x)=| 02 02 0 [x+|0.8
0 0 03 0




Fractal Dimension

Box dimension:

D = im1°9N)
&c—0 Iog




3D IFS fractals: Menger sponge

1/3 0 213
w,(x)=| 0 1/3 0 |[x+| O
0O 0 1/3
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Sierpinski pyramid

p=1990). 53
log(2




Self similar fractals

Looks the same no matter how close
you get.

A smaller copy of the fern

A copy within the copy




Continuous Dependence on Parameters

If the contraction w continuously depends on a parameter p,
then the fixed point depends continuously on p.

The attractor changes continuously as you change the
parameters.

Animation : Dancing fern

Simulations by Eric Heisler



Deterministic and random trees
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Tree Fractals: Transformations

e S
\ /

~ rcosg -—rsiné X

| " w,(V)=| V4|

\ rsind rcosé Y,

L (Xllyl) | -
N rcosé rsind | | X
W, (V) = _ V+
—rsingd rcosé Y

El 1 1 1 1 1 1
0.2 015 -01 -0.05 0 0.058 0.1 015 0.2

Each iteration takes a line segment and creates two branches.
Transformations w rotate trunk by & or -3,
shrink by r, and move to new position



Tree Fractals: IFS with condensation

Let C Dbe the trunk of the tree: w,(B)=C, BeH
W =w, uw, Uw,
A,=C, C Isacondensation set.
A =W (A) =Cuw,(C)uw,(C)
A, =W(A)=Cuw (C)uw,(C)u(w, Lw,)(w,(C)uw,(C))
A, =W(A)=Cuw/(C)uw,(C)u...



Random Trees

Examples of random trees calculated with different
parameters of the contraction (different angles)



Baker’s Map

(a)

0 1 ) 4

flatten and stretch
cut and
stack
(2x,, ay,) for0<x, <4

Xyt Yort) =
(asts V) (2x,—1,ay +4) for $+<x, <1



Baker’s map: Attractor

flatten and stretch

Stretching and folding are two main mechanisms

of forming an attractor



Baker’s map: Attractor

At the crossection:
topological Cantor set!
(all possible sequences of 0 and 1)



Baker’s map: Fractal Dimension

Let a<1/2. The attractor A is approximated by B (S), which consists of 2"
strips of height a" and unit length. One can cover A with 2"a™ squares

of side ¢ =a" —

Then, N =(a/2)™" , and box dimension can be calculated as limit
when & goes to zero:

In(N) 1. In(1/2)
In(1/ &) In(a)

<2




Ueda Attractor

P=y

§ = —1° — ky + Bcos(z)

Start with a patch of initial conditions
which experiences stretching and folding
Animation of forming an attractor
Simulations by Quishi Wang



The Escape Time Algorithm: Julia Set

Suppose, f: C — C isa polynomial.
Start with ¢, = ¢,

2, = £(z,) = £%(2),
2, = 1(2) = £(2),

2, = F(z00) = F(F((2))) = ()

Let F, be thesetof pointsin C whose orbits do not convergeto

F, = {zec:{| f )|, is bounded}
Then F. isaJuliaset, its boundary J. isJuliasetof f.



The Escape Time Algorithm:
Numerical Approach

Discretize computational domain W.
Foreach z=z iterate f(z):

P.q’

Zoy 21y Zy,ees

V

What is the number of iterations needed to escape from V ?
Color points in V according to the number of iterations needed
==> Julia Set



Julia Set, f(z)=A"cos(z), A =0.75+70.85
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escape.
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Here,
f(z) = A cos(z), A =0.75+i*0.85
Simulations by Brandon Olson

Julia Set

Color points in W according to the
number of iterations needed for
an orbit starting at point z, to

Julia Set, f{z)=a*cos(z), A =0.75+*0.85
22 T
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Newton fractal

Newton’s method of solution f(X)=0 fast (quadraticaly)
converges when starting point is close to the solution.

_ 1)

Xn+1 — Xn ' = g(xn)
F'(x,)
For solution of the equation: z*—-1=0
the Newton’s method gives: 74 _1
g(z)=12-

47°
The roots are 1, -1, i, and —i, there are 4 attracting points.
Points of the complex plane are colored by a different color,

depending on the root to which the Newton method
converges.



Imag Axis

Newton fractal:
Sensitive dependence on initial conditions

Outside the region of quadratic convergence the Newton’s method
can be very sensitive to the choice of starting point.

Mewtons hMethod (zsj

Mewtons Method (24)

Imag Axis

real Axis real Axis

z* -1 z°—-1=0

Il
o

Simulations of Aryn Roth



Generalized Newton fractal

zeneralized Mewtons Fractal, 25-1:0, a=1+i




Participants

Brandon Olson
Roxanne Brinkerhoff
Bill Clark
Gregory Danner
Eric Heisler
Masaki lino
Jordan Judkins
Carl Tams

Liz Doman

Aryn Roth
Quishi Wang



