$\boxed{1}$ Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist everywhere, but f is not differentiable at (0,0).

2 Find the differential of the function $G: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}^3$ given by

$$G(x,y) = (y \ln x, xe^{xy}, \sin(xy)).$$

Find the best affine approximation to G at the point $(1, \frac{\pi}{2})$.

- 3 Assume the function $F: \mathbb{R}^p \to \mathbb{R}$ differentiable everywhere, and that its gradient dF is a constant vector. Show that that F is an affine function.
- 4 Find the differential of the real valued function $f(x, y, z) = xy^2 \cos(xz)$. Then find the best affine approximation to f at the point $(1, 1, \frac{\pi}{2})$.
- 5 From the definitions, prove that if a function $F: U \to \mathbb{R}^q$, $U \subset \mathbb{R}^p$ open, is differentiable at $a \in \mathbb{R}^p$, then F is continuous at a.
- 6 If $f: \mathbb{R} \to \mathbb{R}$ is differentiable, and g(x,y) = f(xy), show that $x \frac{\partial g}{\partial x} y \frac{\partial g}{\partial y} = 0$.
- 7 Let (x,y) be the Cartesian coordinates in \mathbb{R}^2 , and (r,θ) be the polar coordinates.
 - (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. Find formulas for the partial derivatives of f with respect to r and θ in terms of the partial derivatives with respect to x and y.
 - (b) The Laplacian differential operator is given in Cartesian coordinates by $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$. Prove that in polar coordinates the Laplacian is given by $\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$.
- 8 For the curve

$$\gamma(t) = (\cos t, \sin 2t),$$

find a parametric equation of the tangent line at (0,0) if the domain of $\gamma(t)$ is $\{t \in \mathbb{R} \mid \pi < t < 2\pi\}$.

- $\boxed{9}$ Find an equation for the tangent plane to the surface $x^2+y^2-z^2=1$ at each point (a,b,c) on the surface.
- 10 Find the degree n=2 Taylor's formula for $f(x,y)=\ln(x+y+1)$ at the point (0,0).
- Consider the function $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by $F(x,y) = (e^x \cos y, e^x \sin y)$.
 - (a) Does F have an inverse?
 - (b) Does F have a smooth local inverse function near every point (x, y)?
- Consider $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(r,\theta) = (r\cos\theta, r\sin\theta)$. Does a smooth local inverse function exist near $(1,2\pi)$? If it does, find one explicitly.
- 13 Consider the function $F: U \to \mathbb{R}^2$, where

$$F(x,y) = \left(x^2, \frac{y}{x}\right), \qquad U = \{(x,y) \in \mathbb{R}^2 \mid x \neq 0\}.$$

- (a) Find all the points near which F has a smooth local inverse.
- (b) If F is restricted to $V = \{(x,y) \mid x > 0, y > 0\}$, find a smooth inverse for F. What is the domain of F^{-1} ?
- (c) As in (b), find the differential of F^{-1} directly, and also by applying the Inverse Function Theorem. Compare the results.
- 14 Problems 4 and 5 in 9.7.