- 1 Is the set $\{(x,0) \in \mathbb{R}^2 \mid -1 < x < 1\}$ open, closed, both, or neither in \mathbb{R}^2 ?
- 2 Is the following set connected in \mathbb{R}^2 : $\{(x, y) \mid x^2 + y^2 < 1\} \cup \{(x, 1) \mid x \in \mathbb{R}\}.$
- 3 Define convergence sequence. Does the sequence $\{x_n\}_{n\in\mathbb{N}}$,

$$x_n = \left(1 + \frac{(-1)^n}{n}, \sin\frac{1}{n}\right) \in \mathbb{R}^2,$$

converge? If so, to what?

4 Choose one of the following statements to prove. Indicate which one you choose.

- (a) Let A be a set in a topological space X. A is closed if and only if every sequence in A that converges in X converges to a point in A.
- (b) Let A be a set in a metric space X. A point $a \in A$ is an interior point of A if and only if for any sequence $\{x_n\}$ in X converging to a there is some N such that for all n > N, $x_n \in A$.
- (c) Let A be a set in a topological space X. A is disconnected if and only if there is a continuous map $f: A \to \mathbb{R}$ whose image is the set $\{0, 1\}$.
- 5 Define *compactness*. Let E be an infinite set in \mathbb{R}^d , and suppose that every point of E is isolated. Show that E is not compact.
- 6 Define continuity of a function $f: \mathbb{R}^2 \to \mathbb{R}$ at a point $(x_0, y_0) \in \mathbb{R}^2$. Using just the definition, show that $f(x, y) = xy^2$ is continuous at any point $(x_0, y_0) \in \mathbb{R}^2$.

7 Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

- (a) Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is continuous. Then $E = \{x \in \mathbb{R}^d \mid f(x) \le 0\}$ is a closed set.
- (b) Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is continuous. Then $E = \{x \in \mathbb{R}^d \mid ||f(x)|| \le 1\}$ is a connected set.
- (c) Let $E \subset \mathbb{R}^d$, and $\{x_n\}$ a sequence in the boundary ∂E . If the sequence converges to a point $x_n \to x$ in \mathbb{R}^d , then $x \in \partial E$.

8 Does the sequence of functions $\{F_n\}$ converge on $B_1((0,0,0)) \subset \mathbb{R}^3$, where $F_n \colon \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

$$F(x, y, z) = \left(\sin\frac{xy}{n}, \frac{1}{n}, x^n + y^n + z^n\right).$$

If so, is the convergence uniform?