
MATH 3160 UPDATE: SPRING 2014

The most recent lecture will always appear first; please email me if you notice any errors/typos.

Lecture 26: Tuesday, April 15
Today, we recalled the definition of reside, as well as the (very important!) Residue Thereom,
which we discussed last time. After going over a few examples to jog our memory, we turned our
attention to finding a (sometimes) more efficient way to compute resides. Recall that a singular
point z0 of f(z) is a called a pole of order m if and only if we can write

f(z) =
φ(z)

(z − z0)m
,

where φ(z) is a function that is analytic (and non-vanishing) at z0. Using such a representation
of f(z), we used the fact that φ(z) has a Laurent expansion in a neighborhood of z to obtain the

following Theorem: If z0 is a pole of order m, and if f(z) = φ(z)
(z−z0)m , with φ as above, then

Resz=z0f(z) =
φ(m−1)(z0)

(m− 1)!
.

A really nice case of this is when m = 1 (in this case, we called z0 a simple pole), since the formula
simplifies down to Resz=z0f(z) = φ(z0). We spent the rest of the class going over lots of examples.
Note: Students should expect this material to appear (in some way) on the final exam (which
takes place next Friday, April 25).

Lecture 25: Thursday, April 10
We started class by defining the notion of residue. Definition: If a function f(z) is analytic in
some deleted neighborhood of a point z0, the reside of f at z0, denoted Resz=z0f , is the coefficient
of 1

z−z0 in the Laurent series expansion of f(z) centered at z0. We computed a bunch of examples

of residues (especially residues at non-zero points, which required us to find Laurent expansions not
centeret the origin), and then stated and proved the main theorem of the day (and one of the main
theorems of the course). Theorem (Cauchy’s Residue Theorem): If C is a closed contour, and
if f(z) is analytic at all points on C, and at all points inside of C, except for the points z0, · · · , zn,
then ∫

C
f(z)dz =

n∑
k=0

2πi · Resz=zkf(z).

Using this theorem, we computed many examples of contour integrals. Moreover, though many of
these examples could have been dealt with using the (generalized) Cauchy Integral Formula, we
also went over examples in which none of our previous techniques would have worked. We’ll start
next time by computing more examples of integrals using the Residue Theorem.

Lecture 24: Tuesday, April 8
Today, we went over the following generalization of an earlier theorem: Theorem: If f(z) is
analytic on a simple closed contour C, and fails to be analytic only at a finite number of points
z0, · · · , zn contained strictly inside of C, then

∫
C f(z)dz =

∑n
k=0

∫
Ck
f(z)dz, where here, C0, · · · , Cn

are small contours lying entirely inside of C, with each contour Ck being centered at zk. We gave
a sketch of the proof of this (it involved connecting C0, · · · , Cn (with the reverse orientation) with
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the original contour C in a clever way, and then applying Cauchy-Goursat. After going over some
examples of how to use this theorem, we ended class by discussing (the results of) Midterm 2.

Lecture 23: Thursday, April 3
Today, we took Midterm 2.

Lecture 22: Tuesday, April 1
We gave a detailed ε− δ proof of Laurent’s theorem. Changing track, we then defined the notion of
complex manifolds. After discussing/reviewing the necessary background from topology (e.g, the
notion of homotopy equivalence), we talked a bit about Teichmuller spaces, and eventually, moduli
spaces. We finished the class by discussing the mapping class group; we’ll pick up here next time.
April Fools! We actually spend some time reviewing the statements of Taylor/Laurent series, and
spent the rest of the class computing examples of Laurent series. Don’t forget that Midterm 2 is
in two days!

Lecture 21: Thursday, March 27
Today, we recalled Taylor’s theorem (which was covered by Jack on Tuesday). Theorem (Taylor
series): Suppose f is analytic at z0, and that the nearest point to z0 at which f is not analytic is
a distance R from z0 (note, it is possible to have R =∞). Then, for every point z inside the circle

of radius R centered at z0 (i.e, |z − z0| < R), then f(z) =
∑∞

n=0
f (n)(z0)

n! (z − z0)n. The series you
get when z0 = 0 is called the Maclaurin series of f . After thinking a bit more about series of these
types, we then asked whether power series expansions exist for functions that are not analytic at a
point z0. In this case, we saw that such power series do exist, but we have to allow to possibility
of having negative powers of z appear in our expansion. Theorem (Laurent series) Suppose f
is not analytic at a point z0, but is analytic in the annular region A < |z − z0| < B centered at z0
(here, we may have that A = 0, and that B =∞). Then, there exists a power series expansion

∞∑
n=0

an(z − z0)n +

∞∑
n=0

bn
(z − z0)n

,

where the coefficients an and bn are explicitly determined in terms of some contour integrals (we
de-emphasized this point of view in class). Using the important formula

∑∞
n=0w

n = 1
1−w if |w| < 1,

we computed a bunch of examples of Laurent series (we’ll get more practice computing these in
HW).

Lecture 20: Tuesday, March 25
Today’s lecture was covered by Jack Jeffries. Jack went over Sections 56, 57, and 59 (skipping
Section 58).

Lecture 19: Thursday, March 20
Today, we had a more theoretical focus. We began by receiving the (generalized) Cauchy integral
formula, and then continued our discussion of its consequences. We started out by deriving Cauchy’s
inequality, which describes how big f (n)(z0) can be at an analytic point z0 (see Theorem 3 from
Section 52). Using this, we were able to state and prove Liouville’s Theorem: If f is bounded
and entire, then f must be constant. Using this new result, we were able to state and prove the
Fundamental Theorem of Algebra: If P is a non-constant polynomial with complex coefficients,
then P must have a root (which is also a complex numbers). We discussed how this is the same thing
as saying every polynomial with complex coefficients can be factored completely into a product of
linear factors (each with some multiplicity). This is probably the most important property of the
complex numbers that we will discuss in Math 3160.
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Lecture 18: Tuesday, March 18
We started the lecture by reviewing (and sketching the key ideas behind the proofs) of the most
important facts regarding contour integration that we discussed before the break (the Cauchy-
Goursat theorem, the theorem on invariance of contour, and the very important Cauchy Integral
formula). We then went over some example of how to use the Cauchy integral formula, and then
started exploring generalizations. Indeed, without too much work, we were able to prove the
following generalization of the Cauchy Integral formula (which, by abuse of notation, we will also
call the Cauchy Integral formula): Theorem: If f is analytic on and inside a simple closed contour
C, and z0 is a point contained inside of C, then

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1dz.

After working through a bunch of practical examples, we also were able to use this to prove the
following (amazing) theorem: Theorem: If f is analytic at z0, then all higher derivatives f (n)

are also analytic at z0. Next time, we’ll give other interesting consequences of the Cauchy Integral
formula.

Lecture 17: Thursday, 3/6
We began the class by recalling the Cauchy-Goursat theorem, and went over some more examples.
Next, we examined what can be said in the situation that we are integrating over a domain with
holes (i.e., over a domain that is not simply connected). By dividing up contours in a clever way,
we were able to deduce the following Theorem: If C1 and C2 are two simple closed contours (both
oriented in the same direction) such that f is analytic in the region contained between C1 and C2,
then

∫
C1
fdz =

∫
C2
fdz. This (amazing) result make computing integrals much easier, in that (in

many cases) we can replace a given (random) contour with one that is really nice. This set us up
to being our discussion of the (famous) Cauchy Integral formula, which is another great way to
evaluate (special) contour integrals.

Lecture 16: Tuesday, 3/4
We recalled the main theorem from last time (i.e., the result relating the three points appearing
below), and went over an example of how to use it to compute

∫
C

√
zdz, where C denotes any

contour starting at 10, and ending at −10, and lying entirely above the real axis. After this, we
defined what it means for a region to be simply connected. Intuitively, this condition can be restated
as follows: A region is simply connected if and only if it contains no “holes.” After going over some
(non)examples, we presented (a version of) the Cauchy Goursat Theorem: If a closed contour
C is contained a region D such that 1) f is analytic at all points of D, and 2) D is simply connected,
then

∫
C fdz = 0. Note: For those reading the text, this appears as the main theorem in Section

48. We then went over an example of how to (not) use the Cauchy-Goursat theorem. Using the
third point of the theorem described last class (you can see it in the previous entry), we saw that
the Cauchy-Goursat theorem allows us to note the following string of implications:

• Suppose f is analytic in some region D, and that D happens to be simply connected (i.e.,
contains no holes)
• Cauchy-Goursat then says that

∫
C fdz = 0 for every closed contour C contained in D.

• This is just the last point of the Theorem described during last class, which tells us that f
has an antiderivative F throughout D.
• Summarizing, we see the following (rough) idea: If f happens to be differentiable at every

point of D, then f is a derivative at every point of D!
• This observation appears as the Corollary in Section 49.

We’ll pick up here next time.
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Lecture 15: Thursday, 2/27
We started by recalling an earlier computation showing that

∫
C fdz sometimes depends on the

contour C itself, and not just its starting/end points. We then recalled the definition of what it
means for a function f(z) to have an antiderivative F (z) on a domain D: For every point z in
the domain, we have that F ′(z) = f(z). We then stated a very important theorem (which may
be thought of as a complex version of the Fundamental Theorem of Calculus). Theorem: For a
function f(z) defined on a domain D, the following are equivalent:

(1) f(z) has an antiderivative on the domain D.
(2) If C is a contour contained in D, then

∫
C fdz depends only on the starting/ending points

of C. Moreover, if F (z) is an antiderivative of f on the domain D, then∫
C
f(z) = F (z2)− F (z1),

where z1 is the starting point of C, z2 the ending point of C, and C is contained entirely
in D.

(3)
∫
C fdz = 0 for every closed (i.e., same starting/ending point) contour C contained in D

We went over a bunch of examples on how to use this theorem. The most interesting of this was
the computation that

∫
C

1
zdz = 2πi, where C is the circle of radius 10 centered at the origin. The

key point here was that we had to break the contour up into multiple pieces, and on each piece,
find an antiderivative of 1

z by looking at an appropriate branch of log z. We’ll pick up here next
time.

Lecture 14: Tuesday, 2/25
Today, we gave more examples of contour integrals. We started the class by recalling a computation
done in the previous class: For a certain function f(z), and for a given contour C with starting
point 0 and ending point 1 + i, we computed the integral

∫
C fdz. On the other hand, for the same

function f(z), and for a different contour C ′ with the same start/end points as C, we saw that the
value of

∫
C′ fdz and

∫
C fdz were different. Thus, we observed the follwing Observation: Even

though the function being integrated and the endpoints of the path don’t change, the value of the
contour integral may change for different contours! On the other hand, we showed directly that, if
f(z) = zn for some n ≥ 1, then

∫
C fdz depended only on the endpoints of the contour C, but not

on the actual contour itself! This subtle difference will become a key point shortly.
We then showed that the arc length of a contour C given by z = z(t), a ≤ t ≤ b, is given by∫ b

a |z
′(t)|dt, and using this, we proved the following Theorem: If |f(z)| ≤M for every point z on

the contour C, then
∣∣∫
C fdz

∣∣ ≤ M · L, where L is the arc length of the contour C. This theorem
is very useful, in that it allows us to understand integrals without actually computing them! We
highlight two points that appear often.

How to find M : If f(z) = g(z)
h(z) is a fraction, then to find an M that works, do the following:

• Find a number N such that |g(z)| ≤ N for every point z on the contour.
• Find a number D such that |h(z)| ≥ D for every point z on the contour.

Then, it follows that |f(z)| = |g(z)|
|h(z)| ≤

N
D , so you can take M = N

D . When finding the values of N

and D described above, the following inequalities will be key:

• |z ± w| ≤ |z|+ |w|
• |z ± w| ≥ ||z| − |w|| (often, the stuff on the inside will be positive, so the outer absolute

value symbol won’t be necessary).

Lecture 13: Thursday, 2/20
Today, we recalled the definitions of arcs and contours, and also recalled what it means to take a
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function w(t) = u(t) + iv(t) (with t being a real variable), and compute the integral
∫ b
a w(t)dt to

obtain a complex function. After this, we then defined what it means to integrate a complex valued
function over a contour: If C is the contour given by z = z(t) with a ≤ t ≤ b, then∫

C
fdz =

∫ b

a
f(z(t))z′(t)dt.

We stated some basic properties of contour integrals (i.e., the behavior under addition of functions,
multiplication by a constant, and “breakdown” of contour into the sum of other contours), and
then computed a couple of examples. We’ll pick up here next time. Note: We will be skipping
Section 42. I will also be accepting HW until tomorrow at noon, in my mailbox.

Lecture 12: Tuesday, 2/18
Lecture 12 was covered by Jack Jeffries. Jack covered Sections 37-39

Lecture 11: Thursday, 2/13
Today, the class took Midterm 1.

Lecture 10: Tuesday, 2/11
We called the definition of sin(z) and cos(z). These functions are entire, and satisfy many of the
same familair properties. We spent some time verifying some of these properties (e.g., the fact that
d
dz sin(z) = cos(z), ddz cos(z) = − sin(z), the identity sin2(z) + cos2(z) = 1, and others). We also
pointed out one important difference: Even though the norm of the real-valued functions sine and
cosine is always less than or equal to 1, we saw an example in which | cos(z)| went to infinity as z
moved away from the origin on the positive imaginary axis. We then briefly defined the complex
hyperbolic functions, and computed their derivates. We concluded the course by defining inverse
trig functions, and gave a detailed description of the value of cos−1(z) (note, your book omits this
case, but covers the sin−1(z) case instead). These inverse trig functions are multivalued functions,
and even have multiple-valued inputs! NOTE: There will be no assigned HW for this section;
instead, students are asked to study for Midterm 1.

Lecture 9: Thursday, 2/6
We recalled that the principal value Log(z) is not continuous anywhere on the negative real axis.
The remedy this, we restricted the domain further to avoid all points on the negative real axis; the
resulting function is called the principal branch of Log(z). Using the CR criteria, we were able to
show that the prinicipal branch of Log(z), is analytic, with derivative 1

z . We then discussed the basic
properties of the prinicipal value of Log(z), and observed some odd behavior (e.g., the fact that,
sometimes, Log(z1z2) 6= Log(z1z2)). We then discussed what it means (over the real numbers) to
take non-integer exponents. Motivated by this, we defined what it means to raise complex numbers
to complex exponents. If z and c are complex, then zc is a multi-valued function, and to remedy
this, we defined the principal value and principal branch of zc, the latter being a differentiable
function with derivative equal to zc−1. We concluded by observing some odd behavior that can
occur when raising to complex exponents (e.g., the fact that, sometimes, (z1z2)

c 6= zc1z
c
2, even when

considering only principal values)! At the conclusion of the course, we defined the complex trig
functions, and will pick up here next time.

Lecture 8: Tuesday, 2/4
We recalled the definition of a harmonic function, and defined what it means for jarmonic real-valued
functions u(x, y) and v(x, y) to be harmonic conjugates. We then related harmonic conjugates to
analytic functions as follows: Theorem The function f = u+ iv is analytic if and only if u and v
are harmonic conjugates. We then showed how the CR equations + integration allow one to, given
any harmonic function, construct a harmonic conjugate, and hence an analytic function! After
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this, we discussed the complex exponential, and considered how to solve equations of the form
z = ew. This lead us to define the complex logarithm log z (which is a multi-valued function), and
its principal branch Log z (which is actually a function). We concluded the class by showing that
Log z is discontinuous at every point on the negative real axis. Next time, we’ll investigate the
differentiability of this function.

Lecture 7: Thursday, 1/30
We began by recalling how to compute f ′(z) using the CR equations (provided that the real/imaginary
parts of f are continuous). After defining what it means for a function f to be analytic at a point
z0, we then used the methods of the previous class to construct various (non) examples of analytic
functions. We then defined what it means for a function to be entire, and then went over examples
of entire functions. After this, we discussed a handful of theoretical results. Indeed, we showed
that a function with f ′(z) = 0 everywhere on an open set must be constant on that open set.
Using this, we were able to show the following Theorem: If f = u + iv and f = u − iv are both
analytic, then both f and its conjugate f must be constant! Recall, we’ve seen this type of behav-
ior often in examples. Example: f(z) = z is analytic everywhere, but f(z) = z is not analytic
anywhere! Example: f(z) = ez = ex cos(x) + i · ex sin(x) is analytic everywhere, but its conjugate

f(z) = ez = ex cos(x)− i · ex sin(x) not analytic anywhere! In the final theoretical result of the lec-
ture, we showed that an analytic function f(z) such that the norm |f(z)| is constant everywhere on
an open set must be itself constant. We concluded the lecture by defining the notion of a harmonic
function. We briefly discussed how harmonic functions are related to analytic functions, and will
pick up here next time.

Lecture 6: Tuesday, 1/28
We began by recalling the definition of f ′(z), and, using the limit definition, computed some
examples (including some in which f ′(z) did not exist). We then proved that differentiability
implied continuity, and went over some of the basic rules for (complex) differentiation: These were
exactly the same as the rules over R, and include the sum/product/quotient/chain rules. We then

discussed how to fill in the blanks f ′(z) = ? + i · ? in terms of f = u + iv, in the case that the
derivative actually exists. By computing the limit appearing in f ′(z) in two ways (along the purely
real and imaginary axes), we were able to derive the Cauchy-Riemann equations

ux = vy and uy = −vx.

Moreover, when f ′(z) exists, we have that

f ′(z) = ux + ivx.

We also showed that when the CR equations for f = u + iv are satisfied at a point z0, and if all
of the partial derivatives of u and v are continuous at z0, then we can guarantee that f ′(z0) exists,
and is given by f ′(z0) = ux(x0, y0) + iv(x0, y0). We then went over a bunch of examples of how to
use this. Note: This is the most important theorem we’ve discussed so far, and it is important
that students know how to use it. If you are having trouble with this material, please let me know.

Lecture 5: Thursday, 1/23
We continued discussing limits of complex valued functions. In particular, we took real and complex
parts of the statement limz→z0 f(z) = w0 to show that this limit converges if and only if the real
part of f(z) goes to the real part of w0 as z → z0 and the imaginary part of f(z) goes to the
imaginary part of w0 as z → z0. Using this, we observed that the basic properties of limits (i.e.,
formulas for limits of sums/products/quotients) that we know from R functions also hold in the
C setting. Using this, we showed that limz→z0 P (z) = P (z0) whenever P (z) is a polynomial. We
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then briefly discussed what ∞ means in the complex numbers, and restated limits involving ∞ in
terms of limits involving regular (i.e., non-infinite) complex numbers. After computing a bunch of
examples, we moved on.and defined the notion of continous and differentiable complex functions.
We’ll pick up here next time.

Lecture 4: Tuesday, 1/21
Today, we continued our discussion of complex-valued functions of a complex variable. Any such
function f(z) can be written either as an expression involving z, or equivalently, in the forms
f(z) = u(x, y) + iv(x, y) = ũ(r, θ) + iṽ(r, θ), where z = x+ iy = reiθ, and the functions u, v, ũ, ṽ are
all real-valued. We went over examples showing the advantages of this form, and showed via the
example f(z) = Arg

(
1
z

)
that it is not always obvious what the largest domain a function may have.

We then discussed briefly the notion of a multi-valued function, and gave two examples. After this,
we discussed mappings by functions f(z) = z2 and f(z) = ez, spending a lot of time on the latter.
We concluded the day by defining what it means for limz→z0 f(z) = w0. In particular, we stressed
that the “new” issue here (namely, the fact that when, computing a limit, one may approach z0
in whatever way they wany) makes computing such limits more subtle than what students may be
familiar with over the real numbers.

Lecture 3: Thursday, 1/16
We continued our discussion of nth roots of unity. In particular, we discussed a geometric interpre-
tation of roots of unity: the nth roots of unity are the vertices of a regular n-gon inscribed inside
the unit circle, with the first vertex being 1. Motivated by this, we defined the notion of a principal
nth root of unity, which we denoted by ωn. The key point is that all of the roots of unity can be
described by raising ωn to appropriate powers. After this, we saw how to use nth roots of unity to
solve any any equation of the form

zn = z0 = r0e
iθ0 .

Indeed, there is always an obvious solution zobvious = n
√
r0 · eiθ0/n, and every other solution is of the

form z = zobvious · (some nth root of unity). Afterwards, we went over a bunch of examples, and
expressed roots of a given complex number as vertices of certain polygons inscribed inside of circles
of a certain radius. We concluded lecture by introducing the notion of a complex-valued function
of a complex variable, and giving some elementary examples. We’ll pick up here next time.

Lecture 2: Tuesday, 1/14
We began by recalling some of the topics discussed in the previous lectures. In particular, we
derived the identity

eiθ = cos(θ) + i sin(θ),

using nothing more than the basic power series expansions for ex, sin(x), and cos(x). We also
recalled the exponential form z = reiθ of a complex number, as well as the notions of (principal)
arguments. As an application, we saw that exponential forms allowed us to (often) quickly compute
powers of a given complex number. We also used the fact that

cos(nθ) + i sin(nθ) =
(
eiθ
)n

= einθ = cos(nθ) + i sin(nθ)

to derive the well-known double angle formulas for sin and cos (recall, we just set n = 2 in the
above identity). We then proceeded to discuss solutions to the equation zn = 1, and saw that the
complex numbers

ei·
2πk
n with k = 0, 1, · · · , n− 1

give the n-distinct solutions to this equation. We call these numbers nth roots of unity, and will
continue our discussion of them next lecture.
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Lecture 1: Thursday, 1/9
Lectures 0 and 1 were covered by Jack Jeffries. Jack covered roughly the first 6 sections of the text.

Lecture 0: Tuesday, 1/7
Lectures 0 and 1 were covered by Jack Jeffries. Jack covered roughly the first 6 sections of the text.
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