
SELECT HW SOLUTIONS: MATH 3160, SPRING 2014

For solutions to problems not appearing here, feel free to consult the student solutions manual.

Section 29, Problem 4: The easiest way to see that f(z) = ez
2

is entire is to recog-
nize it as a composition of two entire functions (i.e., ez and z2). Moreover, the chain

rule allows us to compute that f ′(z) = ez
2 · 2z. Alternatively, we may write f(z) =

ex
2−y2 (cos(2xy) + i sin(2xy)). If u and v denote the real and imaginary parts of f(z), then

the student may verify that

ux = vy = 2ex
2−y2 (x · cos(2xy)− y sin(2xy))

and that

−uy = vx = 2ex
2−y2 (x · sin(2xy) + y · cos(2xy)) .

In particular, we see that the partials are all continuous everywhere, and also satisfy the
CR equations everywhere. Therefore, we may write

f ′(z) = ux + ivx = 2ex
2−y2 · (x · cos(2xy)− y sin(2xy)− i · (x · sin(2xy) + y · cos(2xy)))

= 2(x+ iy) · ex2−y2 (cos(2xy) + i sin(2xy)) = 2z · ez2 .

Section 26, Problem 1: Since these are all similar, we’ll only do (a): If v is a harmonic
conjugate of u = 2x − 2xy, we see that vy = ux = 2 − 2y, and integrating with respect to
y shows that v = 2y − y2 + φ(x), where here, φ(x) denotes an arbitrary function of x. The
remaining CR equation shows that vx = φ′(x) = −uy = 2x, and integrating with respect to
x shows that φ(x) = x2 +C, where C can be any constant. Finally, subbing into our earlier
expression for v shows that v = 2y − y2 + x2 + C.

Section 25, Problem 2: We went over a bunch of examples like this in class, so I’ll only
give the solution to (b): Here, u = 2xy and v = x2 − y2. The CR equations state that

ux = 2y = vy = −2y and uy = 2x = −vx = −2x,

which we see are both satisfied only when x = y = 0. Since the partial derivatives are all
continous everywhere, we have that f ′(0) exists, and is equal to ux(0, 0) + ivx(0, 0) = 0.
However, the function is not analytic at the origin, since in every neighborhood of 0, the
only point where f is differentiable is when z = 0.

Section 25, Problem 3: The fact that the composition of two entire functions is entire
follows from the chain rule: If f(z) and g(z) are both entire, and f(g(z)) is defined, then
d
dzf(g(z)) = f ′(g(z))g′(z), and hence is differentiable everywhere (i.e., entire). Similarly, if

c1 and c2 are two complex constants, then d
dz (c1f + c2g) = c1f

′ + c2g
′, by the sum rule for

derivatives, and hence any linear combination of two entire funtions is entire.
Section 23, Problem 5: Let f(z) = x3+i(1−y)3, where here both x and y are real numbers

(this will be important later on). In this setting, u = x3 and v = (1 − y)3. If u and v are
to satisfy the CR equations, then we must have that

ux = 3x2 equals vy = −3(1− y)2 and uy = 0 equals − vx = −0 = 0.

Thus, only the first of these equations is relevant. Moreover, this equation shows that
x2 = −(1 − y)2, which shows that x = ±i · (1 − y). Since both x and y are real, we see
the only way this happens is when x = 0 and y = 1. Thus, the only point where the CR
equations are satisfied is when x = 0 and y = 1 (i.e., z = i). Since all of the partial derivates
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are continuous everywhere, and since we just showed that the CR equations are only when
z = i, it follows that we may write f ′(z) = ux + ivx only when z = i.

Section 18, Problem 10: Recall that we went over a bunch of similar examples in class.

(a) To see that limz→∞
4z2

(z−1)2 = 4, we must show that limz→0
4(1/z)2

((1/z)−1)2 = 4. However,

lim
z→0

4(1/z)2

((1/z)− 1)2
= lim

z→0

4

z2((1/z)− 1)2
= lim

z→0

4

(1− z)2
= 4.

(b) By definition, limz→1
1

(z−1)3 =∞, since limz→1
(z−1)3

1 = 0.

(c) To see that limz→∞
z2+1
z−1 =∞, we must show that limz→0

(1/z)−1
(1/z)2+1

= 0. However,

lim
z→0

(1/z)− 1

(1/z)2 + 1
= lim

z→0

z − z2

1 + z2
= 0.

Section 14, Problem 7: Under the function f(z) = ez = exeiy, the region

D = {x+ iy : x ≥ 0 and 0 ≤ y ≤ π}

gets mapped to the region

R = {z = x+ iy : y ≥ 0 and |z| ≥ 1} .

Geometrically, this image consists of all points in the upper half-plane not contained strictly
inside the unit circle centered at the origin. To see why this is true, note that the vertical
slice of the region D in which x = a and 0 ≤ y ≤ π gets mapped to the top half of the circle
of radius ea centered at the origin.

Section 13, Problem 4: Give z = reiθ, then

f(z) = z +
1

z
= reiθ +

1

r
· e−iθ = (r cos(θ) + i · r sin(θ)) +

(
1

r
cos(−θ) + i · 1

r
sin(−θ)

)
= (r cos(θ) + i · r sin(θ)) +

(
1

r
cos(θ)− i · 1

r
sin(θ)

)
=

(
r +

1

r

)
cos(θ) + i

(
r − 1

r

)
sin(θ).

Section 10, Problem 3(a): We seek solutions to z3 = −1, and we follow the process out-

lined in lecture: Note that, since−1 = eiπ, the obvious solution is zobvious = eiπ/3. Moreover,
every other solution differs from this one by a cubed root of unity. Since the cubed roots
of unity are 1, ei2π/3, ei4π/3 it follows that the three solutions are

zobvious · 1 = eiπ/3 = cos(π/3) + i sin(π/3) =
1

2
+ i ·

√
3

2

zobvious · ei2π/3 = eiπ = −1

zobvious · eiπ/3 = ei5π/3 = cos(5π/3) + i sin(5π/3) =
1

2
− i
√

3

2

HW 0, Problem 1 (d): First off, note that

1 + 2i

3− 4i
=

(1 + 2i)(3 + 4i)

(3− 4i)(3 + 4i)
=
−5 + 10i

25
=
−1 + 2i

5
,

and similarly, 2−i
5i = −1−2i

5 . Thus, after adding these, we obtain −2.
HW 0, Problem 2: All but the last two are straight-forward.
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(d) Using properties of conjugation, z − i = z − i = z + i = x+ i · (y + 1). Consequently,

Im
(
z + i

)
= Im (x+ i · (y + 1)) = y + 1,

and hence the set in question consists of all z = x+ i · y with y = 1.
(e) Once again, we’ll need to use basic properties of conjugation and complex norm (i.e.,

modulus). Note that

|2z + i| = 2 ·
∣∣∣∣z +

i

2

∣∣∣∣ = 2

∣∣∣∣z +
i

2

∣∣∣∣ = 2

∣∣∣∣z +
i

2

∣∣∣∣ = 2

∣∣∣∣z − i

2

∣∣∣∣ .
Consequently, the equation |2z + i| = 4 becomes

∣∣z − i
2

∣∣ = 2, hence the set in question

is nothing more than the circle of radius 2 centered at i
2 .

HW 0, Problem 4 (c): As
√

3− i = 2e−iπ/3, we have that (
√

3− i)8 = 28e−8π/3, a complex
number whose principal argument is −8π/3 + 2π = −2π/3.

HW 0, Problem 5: This is just like we did in lecture! By foiling out (twice), we see that(
eiθ

)3
= (cos(θ) + i sin(θ))3 = cos3(θ)− 3 sin2(θ) cos(θ) + i ·

(
3 cos2(θ) sin(θ)− sin3(θ)

)
.

On the other hand, (
eiθ

)3
= ei3θ = cos(3θ) + i sin(3θ).

Now, since two complex numbers are the same if and only if their real and imaginary
parts are the same, comparing the real and imaginary parts of these formulas gives the two
identities we seek.
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