
MATH 2250 UPDATE: FALL 2013

The most recent lecture will always appear first; please email me if you notice any errors/typos.

Lecture 27: Thursday, 12/10
Today, the pace of lecture was slowed down to make sure important concepts are clear before
the midterm. We reviewed how to obtain two real valued solutions from a complex eigenvec-
tor/eigenvalue pair. After doing this, we solved a bunch of examples (including some IVPs) involv-
ing complex eigenvalues/eigenvectors. I expect that, after this, students should have a good idea
of how to solve these types of problems. If this is not the case, please let me know.

After going through more examples, we next dealt with a limitation of the eigenvalue/eigenvector
method to solve ODEs. In particular, we addressed the following situation: If an eigenspace
associated to an eigenvector with multiplicity two contains only one linearly independent vector,
how do we find another? Below, we summarize the conclusions of our discussion.

Algorithm for finding an extra solution: If λ is an eigenvector (with multiplicity two)
associated to the matrix A whose eigenspace does not contain two linearly independent vectors,
then we may produce two linearly independent solutions to Ax = x′ in the following way.

• First, let w denote any solution to the equation

(A− λ1)(A− λ1)w = 0.

• Once you’ve determined such a w, set v = (A − λ1)w. Note that v will automatically be
an eigenvector of A associated to λ.
• Two linearly independent solutions are

x1 = eλtv and x2 = teλtv + eλtw.

We’ll discuss this more next time.

Lecture 26: Thursday, 12/5
In this lecture, we considered homogeneous systems of ODEs with constant coefficients. That
is, we considered systems of the form

Ax = x′

for matrices A = (aij) with constant (real-valued) coefficients. Given such a system, we once

again try the naive approach and look for solutions of the form
(
eλtv1, · · · , eλtvn

)
= eλt · v, where

v = (v1, · · · , vn) is a vector of (possibly complex) constants. We then directly verified that eλt · v
is a solution of the system Ax = x′ if and only if v is an eigenvector of A with eigenvalue λ. We
referred to a solution of this form as an eigensolution of the system. Using this, we outlined
the eigenvalue method for solving a constant-coefficient system Ax = x′, which we summarize
below.

(1) Find the eigenvalues λ1, · · · , λn of A. NOTE: This list may contain repeats (due to the fact
that some eigenvalues may appear with higher multiplicity).

(2) If you are lucky, you will be able to find n linearly independent eigenvectors v1, · · · ,vn.
NOTE: This happens if and only if A is diagonalizable.

(3) In this case, setting x1 = eλ1tv1, · · · ,xn = eλntvn produces a list of n linearly independent
solutions. NOTE: This solutions are guaranteed to be independent once you know the
vectors v1, · · · ,vn are independent.
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(4) At this point, it follows from the previous lecture that the general solution x to Ax = x′ is
of the form

x = c1x1 + · · · cnxn
for some constants c1, · · · , cn.

We then computed general solutions to two system of homogeneous ODEs with constant coeffi-
cients using this method. In these two examples, the associated matrix A was 2 × 2 and had two
real, distinct eigenvectors.

We next talked about that to do if an eigenvalue λ of the associated matrix A was complex.
We recalled the concept of conjugation of complex numbers and vectors: If λ = a + ib, then its
conjugate is λ = a−ib. Similarly, if we have a vector v = u+iw for some vectors u and w with real
entries, we set v = u−iw. We then recalled the following important FACT: If A is a square matrix
with real entries, then v is an eigenvalue of A with eigenvector v if and only if λ is an eigenvalue of
A with eigenvector v. Using these ideas, along with Euler’s formula ea+ibt = eat (cos(bt) + i sin(bt)),
we ended the lecture by showing the following.

Theorem Suppose λ = a + ib and λ = a − ib are conjugate eigenvalues of A, with associated
eigenvectors v = u + iw and v = u − iw. Using these conjugate eigenvectors/values, we are able
to build the following two solutions:

• x1 = eat (cos(bt) · u− sin(bt) ·w), and
• x2 = eat (cos(bt) ·w + sin(bt) · u).

We then went over an example of how to put this result into action. NOTE: Based on feedback,
I am aware of the fact that this last point may not yet be totally clear to many students. Conse-
quently, we will review this at the start of the next lecture. In the meantime, please review Section
7.3, and read ahead to Section 7.4. We finally concluded the lecture with the last Super Quiz of
the semester.

Lecture 25: Thursday, 12/3
Today, we started Chapter 7. The purpose of this chapter is to study systems of ODEs (rather
than just a single ODE). A system of ODEs is any number of functions relating the variable t and
any number of functions of t and their derivatives.

Systems of ODEs occur often in nature. Indeed, we saw in class that a system consisting of
two masses connected by a string produce a system of two 2nd order linear ODEs in two unknown
functions. We also saw an example of a mixture problem that produced a system of ODEs.

Systems of ODEs that are of special interest are those of first-order. To prove this point, we
went over lots of examples in which we turned a higher order system into a first order system (at
the expense of introducing new variables and equations). We also showed how special systems of
ODEs (after some clever manipulation) can be solved by “eliminating” an unknown function to
obtain a single ODE (no longer a system). Admittedly, this approach is limited and will not work
to solve all systems of ODEs.

We ended the break by stating the folowing Theorem: Consider the system

x1(t) =a11(t)x1 + · · ·+ a1n(t)xn

...
...

...

xn(t) =an1(t)x1 + · · ·+ a1n(t)xn

If each aij(t) and fi(t) is continuous in some interval containing a, then there is a unique solution to
the system satisfying the n initial conditions x1(a) = b1, · · · , xn(a) = bn for any collection b1, · · · , bn
of real numbers.

After the break, we started with the following definition. Definition: An m× n matrix-valued
function is an m×n matrix whose entries are functions. That is, A(t) = (aij(t)) for some functions
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aij(t). A vector-valued function of size n is a vector x(t) = (x1(t), · · · , xn(t)) of size n whose entries
are functions. The main motivation for for these definitions is that they simplify our notation. For
example, the derivative of a matrix-valued function A(t) = (aij(t)) is taken component-wise. That
is, A′(t) = (a′ij(t)), and similarly if x(t) = (x1(t), · · · , xn(t)), then x′(t) = (x′1(t), · · · , x′n(t)).

Under this notation, the system

x1(t) =a11(t)x1 + · · ·+ a1n(t)xn +f1(t)

...
...

...

xn(t) =an1(t)x1 + · · ·+ a1n(t)xn +fn(t)

becomes the simple equation

x′(t) = Ax(t) + f(t),

where x(t) = (x1(t), · · · , xn(t)), A = (aij(t)),and f(t) = (f1(t), · · · , fn(t)). An equation of this
form with f(t) = 0 is called homogeneous.

Homogeneous systems are important, because of the following Theorem: Consider the homoge-
neous system Ax = x′ for some n× n matrix of functions A and for some vector valued function x
of size n. Then, the set of all solutions to this system forms a vector space (and in fact is a subspace
of the vector space of all vector valued functions of size n). Furthermore, the solution space has
dimension n. What this means is that once we find n linearly independent solutions x1(t), · · · ,xn(t)
to the system Ax = x′, then every solution x(t) is of the form x(t) = α1 · x1(t) + · · ·+ αn · xn(t).

We then talked about how to verify whether n solutions to a system Ax = x′ is linearly inde-
pendent. Theorem: Suppose that x1, · · · ,xn are n solutions to the system Ax = x′ (where A is
some n×n matrix valued function). Then, there are two options: Option 1: If x1, · · · ,xn are lin-
early independent, then the Wronskian W (x1, · · · , xn) = det (x1 · · ·xn) is non-zero at every point.
Option 2: If x1, · · · ,xn are linearly dependent, then the Wronskian W (x1, · · · ,xn) is always zero!

Finally, we concluded the lecture by giving an example of a specific system of ODEs Ax = x′

given by a 2 × 2 matrix A. We verified that 2 solutions were linearly independent (by computing
the Wronskian) and then used this to solve an initial value problem.

Lecture 24: Tuesday, 11/26
Today, we covered topics from Chapter 6. Our focus during this lecture was on eigenvectors and
eigenvalues. Recall that if A is an n × n matrix, then a real number λ is an eigenvalue of A if
Av = λ · v for some non-zero vector v in R

n. Note that λ may be zero, though the vector v may
not! In this case, we call v an eigenvector associated to λ. We computed a couple of examples of
eigenvalues and eigenvectors, and then made the following observations:

(1) The eigenvalues of A are the roots of the polynomial

det (A− λ · 1)

in the variable λ. This determinant (which is a polynomial of degree n) is called the
characteristic function (or polynomial) of the matrix A.

(2) If λ is an eigenvector of A, then the collection of all non-zero eigenvectors (plus the zero
vector) form a subspace, called the eigenspace of λ. That is, the set {v : Av = λv} (which
by definition, is the eigenspace of λ) is a subspace of Rn. In fact, we see that the eigenspace
of λ is equal to the kernel of the matrix A− λ1.

We continued computing a bunch of examples, up until the break. After the break, we discussed
diagonalization of matrices. Definition: We say that an n× n matrix A is diagonalizable if and
only if A = PDP−1 for some diagonal matrix D and some invertible matrix P .

We then stated the following Theorem (and proved one implication): Theorem: An n×n matrix
A is diagonalizable if and only if A has n linearly independent eigenvectors v1, · · · ,vn. Using this
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theorem, we computed examples of matrices that were diagonalizable, and we even diagonalized
them using the following Fact: If the n × n matrix A has n linearly independent eigenvectors
v1, · · · ,vn with associated eigenvalues λ1, · · · , λn, then if P = (v1 · · ·vn) and D is the diagonal
matrix with diagonal entries λ1, · · · , λn, then A = PDP−1.

We then showed one useful application of diagonal matrices: If A = PDP−1, then An = PDnP−1

for every n ≥ 1. The upshot here is that it is much easier to compute Dn, since it is already diagonal.

As an application, we computed the 1000th power of the diagonalizable matrix

(
5 −6
3 −4

)
in about

10 seconds!

Lecture 23: Thursday, 11/21
Today, we concluded our discussion of Laplace transforms by discussing how to solve problems
involving piecewise continous functions. We recalled the definition of ua(t), the function that is zero
until t = a, and then is equal to 1 for all t ≥ a. Once again, we computed L {ua(t)} by definition,
and then gave examples of what graphs of functions f(t − a) · ua(t) look like. Afterwards, we
proved the following important result: Theorem: If L {f(t)} = F (s), then L {ua(t) · f(t− a)} =
e−asF (s). Restatee in terms of inverses, we have that L −1 {e−asF (s)} = ua(t) · f(t− a).

Using this result, we computed lots of new examples of (inverse) Laplace transforms. As an
application, we derived the formula for the motion of a pendulum using the principle of conservation
of energy, and once we had this formula, we used it to construct an ODE for the motion of a
pendulum under forcing.

We discussed the forcing case at length, and using Laplace transforms, were able to give an
explicit solution describing the motion of a child moving along a swing being pushed in piecewise
fashion.

Note: This is our last lecture on Laplace transforms (though they may appear later on in the
course, they are no longer our main focus). We will be returning to pure linear algebra-type material
during the next lecture, so be sure to read ahead.

Lecture 22: Tuesday, 11/19
We started by reviewing some of the material covered last time. In particular, we used the formula

L

{∫ t

0
f(w)dw

}
=

L {f(t)}
s

,

derived at the end of last class, to compute L −1
{

1
s(s−3)

}
, and then once again to compute

L −1
{

1
s2(s−3)

}
. We then showed (since it was easy) the so-called translation rule, which states

the following:

If F (s) = L {f(t)}, then L
{
eatf(t)

}
= F (s− a).

We then used this to compute a bunch of examples, and took our break.
After the break, we proved the following important and useful formula:

L {tnf(t)} = (−1)n · d
n

dsn
(L {f(t)}) .

To illustrate the usefulness of this, we used it to compute L {t sin(t)}, which according to the for-
mula is just − d

ds (L {sin(kt)}), which is easy since we actually know L {sin(kt)}! After computing
other examples, we combined everything we know so far about Laplace transforms to solve the
following ODE

tx′′ + (t− 2)x′ + x = 0.
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Note, this is quite impressive, since none of the techniques from earlier chapters can be used to
solve this ODE! Note: The last problem on the lab is very similiar to this example; if you weren’t
in lecture today, it might be a good idea to get notes from a friend.

Lecture 21: Thursday, 11/14
Due to Midterm 2, we didn’t spend a lot of time lecturing.

We began by recalling the formula relating the Laplace transform of the higher derivatives of a
function with the Laplace transform of the function. We then did more examples where we used
the method of ”Transforming, solving, and then un-transforming” to solve some ODEs.

We also pointed out the following important fact: The formula was have relating L
{
f (n)

}
with

L {f} is also useful when computing the Laplace transforms of functions. For example, we used
to to compute the transform of t · sin(kt) and t · eat. The point is that anytime a function shows up
in one of its own derivatives, then we can transform everything in sight to derive some interesting
formulas.

We concluded by showing how to relate the transform of an integral with the transform of the
function being integrated. In particular, we showed that

L

{∫ t

0
f(w)dw

}
=

L {f(t)}
s

.

After this, we took Midterm 2.

Lecture 20: Tuesday, 11/12
We continued with §10.1, and started by reviewing the definition of L {f(t)}, and computing
L {ta} ,L {sin(kt)}, and L {cos(kt)} directly using integration by parts. We continued by com-
puting directly L {ua(t)}, where ua(t) is the function that is zero for values of t < a and 1 for
values of t ≥ a. As an application of this, we computed the Laplace transform of the infinite
staircase (see Problem 39 from §10.1). We then defined the notion of inverse Laplace transforms
(i.e., L −1), and computed a few examples.

After the break, we began by asking how Laplace transforms behave with respect to differentia-
tion. Earlier, we had seen that if f(t) = tn, then L {f(t)′} = sL {f(t)}, and if f(t) = cos kt, then
L {f ′(t)} = sL {f(t)} − 1. Motivated by this, showed the following: Theorem: Quite generally,
L {f ′(t)} = sL {f(t)} − f(0). By applying this again, we saw that

L
{
f ′′(t)

}
= sL

{
f ′(t)

}
− f ′(0) = s (sL {f(t)} − f(0))− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0).

In fact, we saw that Corollary: If f and its derivates satisfy the conditions of the previous
theorem, then

L
{
f (n)(t)

}
= snL {f(t)} − sn−1f(0)− sn−2f (1)(0)− · · · − sf (n−2)(0)− f (n−1)(0).

We then showed how this result would help us to solve ODEs! Here is our method.

Step 1: Start with an ODE in the function x(t).
Step 2: Apply L to the system. That is, transform your ODE to obtain an equation in the

new variable s.
Step 3: Using your new system (in the variable s), solve the for L {x(t)}. This step may

require the use of partial fraction decompositions.
Step 4: To find x(t), apply the inverse transform! (this last part is where the partial fractions

come in)

We went over some examples of this procedure, and we’ll see more examples of this during the
next lecture.
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Lecture 19: Thursday, 11/7
We started lecture by continuing our discussion of mass-spring-dashpot systems, and spent some
time talking about (undamped) resonance, and went through an example that is similar to the first
problem on the lab. After this, we took the Quiz, and after the Quiz, we discussed the situation of
practical resonance, which occurs even in the presence of damping. We saw a video showing one of
the most famous examples of this behavior; click here to see a video of the collapse of the Tacoma
Narrows bridge, and click here for a discussion of this event.

We began §10.1, and introduced the definition of a Laplace transform L {f(t)} of a function
f(t) (which is defined for all t ≥ 0 as follows: L {f(t)} =

∫∞
0 e−stf(t)dt. Note, since we are

integrating with respect to t, there will be no t’s appearing in the expression of L {f(t)}. That
is, L {f(t)} is a function of the variable s, and not of t. We computed many examples by hand,
and these are summarized in a table on page 581. In making these calculations, we had to rely
on the following important fact (whose proof is basically by definition): Theorem: If a and b are
constants, then L {af(t) + bg(t)} = aL {f(t)}+ bL {g(t)}. Combining this with Euler’s identity

eiat = cos(at) + i · sin(at),

we were able to use our knowledge that L
{
eat
}

= 1
s−a for s > a to compute that L {cos(at)} =

s
s2+a2

. The trick behind this was to write cos(at) using only eiat and e−iat. For fun, try a similar

trick to show that L {sin(at)} = a
s2+a2

.

Lecture 18: Tuesday, 11/5
Today, we considered nth-order inhomogeneous linear ODEs

any
(n) + an−1y

(n−1) + · · ·+ a2y
(2) + a1y

(1) + a0y = f(x),

where a1, · · · , an are constants, and f(x) is allowed to be any function of x. We recalled that once
one has a particular solution yP of this equation, then any solution is of the form yP + yH , where
the complimentary solution yH is the general solution to the homogeneous equation

any
(n) + · · ·+ a1y

(1) + a0y = 0,

which we learned how to solve in the last lecture. We then commented that it is difficult to
find a particular solution yP , though there is a method that will allow one to made an educated
guess whenever the function f(x) is a linear combination of products of polynomials, exponential
functions eax and the trig functions sin(bx) and cos(bx). We outline this method, called the method
of undetermined coefficients, below.

Step 1: Verify that f(x) is a linear combination of products of eax, sin bx, cos bx and p(x),
where p(x) is a polynomial.

Step 2: Write f(x) as f1(x) + · · ·+ fd(x), where each fi(x) is of the form eax cos(bx)p(x) or
eax sin(bx)p(x). For each fi(x), make a list of all of the functions needed to write fi(x) and
all of its derivatives. This list should be finite.

Step 3: Compute yH , a solution to the associated homogeneous equation.
Step 4: Check to see if any of the functions appearing in yH appear in any of the lists you

found in in Step 2. If there is overlap, you must multiply the entire offending list by the
smallest power of x so that there is no overlap. Note: You only need to modifying the
offending (i.e., overlapping) list, and can leave the other lists alone.

Step 5: Once you have modified your lists in this way (so there is no overlap), then guess
that yP (a particular solution) is a linear combination of the functions appearing in the
modified lists.

Step 6: Substitute back into the original differential equation to solve for the coefficients in
yP . Note: This last step can often be computationally demanding.
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We spent the rest of the class going through examples of how to run this guessing process.

Lecture 17: Thursday, 10/31
The first half of the class was spent reviewing for and taking the super quiz. We then spent some
time considering complex valued functions. In particular, we though a lot about eix, where i is the
imaginary number (i.e., i2 = −1). Using power series expansions and the fact that all of the powers
of i can be expressed using only i,−1,−i, 1, we deduced Euler’s beautiful formula

eix = cos(x) + i · sin(x).

As an aside, we noted that setting x = π in this equation produces the identity eiπ = −1, which
when restated shows that

eiπ + 1 = 0.

Note that every important constant (i.e., e, i, π, 1, 0) that you know appears in this subtle and
beautiful identity! Using these identies, along with the fact that 1) the sum of two solutions to an
nth order linear ODE is a solutions and 2) any multiple of a solution is a solution, we were able to
fill in the last step in the following result: Algorithm Consider an nth order homogeneous ODE

any
(n) + · · ·+ a1y

(1) + a0y = 0

with associated characteristic polynomial

anr
n + · · ·+ a1y + a0

(1) If r is a real root (of multiplicity one), the erx is a solution.
(2) More generally, if r is a real root of multiplicity k, then erx, xerx, · · · , xk−1erx are k solutions.
(3) If r = a± ib is a complex solution (of multiplicity 1), then eax · cos(bx) and eax sin(bx) are

solutions.

We didn’t discuss the case of multiple complex roots, since it won’t come up in applications. Using
these results, we are now able to solve homogeneous linear equations with constant coefficients.
Next time, we’ll see what to do if when faced with non-homogeneous linear equations.

Lecture 16: Tuesday, 10/29
Today, we continued our discussion of nth-order linear ODEs; in particular, we focused largely on
homogeneous nth-order linear ODEs, i.e., equations of the form

(†) an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y(1) + a0(x)y = 0

where y(k) denotes the kth derivative of y with respect to x. We were amazed by the following
important fact. Theorem: The set of all solutions to (†) is a vector space of dimension n. We
spent a lot of time parsing this statement, and pointed out the following consequence: IF we can
find n linearly independent solutions y1, · · · , yn to (†), then any other solution to (†) must be of
the form

c1 · y1 + · · ·+ cn · yn
for some constants c1, · · · cn. This raised two questions: Q1: How do we find n solutions? Q2:
How can we check whether a given collection of functions is linearly independent? We ended up
addressing Q1 after the break, and stated the following way to address Q2.

Given any functions y1, · · · , yn defined on an interval I, let

W = W (y1, · · · , yn) = det


y1 y2 · · · yn

y
(1)
1 y

(1)
2 · · · y

(1)
n

. . .

y
(n)
1 y

(n)
2 · · · y

(n)
n


denote the Wronskian of the functions y1, · · · , yn. We then saw the following possibilities.

7



(1) If y1, · · · , yn are not linearly independent, then the Wronskian is zero for all values of x.
(2) If the Wronskian is not zero for some x value in I, then y1, · · · , yn are linearly independent

functions.

With this tool, we were able to check whether or not a certain collection of (given) solutions to a
homogeneous linear ODE were linearly independent. We then went over a couple of examples, and
used this principle to solve a couple of IVPs. Before the break, we stressed the following Theorem:
Given any particular solution yp to the nth-order linear ODE

(∗) an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y(1) + a0(x)y = b(x)

we can find all solutions to (∗). In other words, any solutions to (∗) is of the form

y = yp + yh,

where yh is a solution to the associated homogeneous system

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y(1) + a0(x)y = 0.

Note that we spent the whole class studying what the general form of such a yh is.
After the break, we then started learning how to solve nth-order linear ODEs with constant

coefficients. We once again focused on the case where 0 appears on the right hand side. Seeking
solutions of the form y = erx for some r led us to consider the so-called characteristic equation
of our ODE, and we saw how roots of this equation gave us solutions to our original ODE. We
discussed the case of repeated real roots (and non-repeated real roots), but did not give a full
explanation for what happens when one gets complex roots. We’ll pick up here next time.

Lecture 15: Thursday, 10/24
We continue our discussion of vector spaces and related topics. We recalled the definition of linear
combinations and linear independence of vectors in a vector space. We also recalled what it
means for a collection of vectors to be a basis for a vector space, and also recalled the notion of
dimension of a vector space. We gave many examples of different bases for the same vector space,
and really emphasized the following point: Roughly stated, a collection of vectors forms a basis if
and only if using them, one can express every element of your vector space in a unique way! In
other words, a basis can be thought of as giving you a coordinate system. We stressed that there
is no natural choice of basis (or coordinate system) for a given vector space (even R

n); indeed, it is
possible that if there are aliens somewhere, they would probably choose a different basis than what
you and I might choose (e.g., the standard basis for Rn given by the vectors e1, · · · , en).

When giving examples, we computed the basis for the kernel of a matrix A, and showed how
this technique will work in general. NOTE: The book prefers to use non-standard terminology
to describe the kernel of a matrix A. In their terminology, the kernel of a matrix A, which we
denote by kerA, is called the solution space to the homogeneous system of equations Ax = 0. As
pointed out by Jason, the following holds: Theorem: The dimension of kerA is always equal to
the number of free variables given by the reduced echelon form of A. That being said, though this
tells you the dimension, you still need to work through the whole process to find an actual basis!

We concluded our discussion of bases/vector spaces by touching on this week’s lab. In particular,
if V denotes the set of all polynomials of degree less than equal to 3, we brielfy showed (you’ll need
to add more detail in your lab) that V is a vector space. We also gave an argument showing
that

{
1, x, x2, x3

}
is a basis for V by explicitly checking that every polynomial in V is a linear

combination of these four guys, and by also checking (explicitly, using the definition) that these
guys were also linearly indepdent. The real content of the lab is to show that another set of 4
polynomials (namely, the set

{
1, x, 3x2 − 1, 5x3 − 3x

}
) is also a basis.
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Students who remained confused about these topics (i.e., bases, linear combinations, linear in-
dependent, etc) should stop by and see me, or talk to me after class!

After the quiz, we discussed higher order linear ODEs. Though it may not seem like it, this topic
is closely related to the last. We defined nth-order linear ODEs and their associated initial value
problems (IVPs), and talked about when these types of IVPs have a (unique) solution.

Lecture 14: Tuesday, 10/22
We began by recalling the definition of a vector space. Roughly speaking, a vector space V is a
collection of objects than can be added together (this sum must stay in V ) and multiplied by a real
number (this product must also stay in V ); additionally, we require that there be an element 0 in
V with the property that u +0 = 0+ u = u for every u in V , and we ask that these operations are
nice (we omit the precise lists here, and instead refer students to their notes, or to the definition
on page 240). We went over many examples of vector spaces, the most important being the vector
space Rn. We also gave some non-examples of a vector space. The second most important example
of a vector space is the kernel of a matrix. We recall the definition here: Definition: If A is an
m×n matrix, then the kernel of A, denoted kerA, is the subset of Rn consisting of all vectors sent
to zero (i.e., killed by) the matrix A. In math notation, we have that

kerA = {x in R
n such that Ax = 0 .}

We showed in great detail that kerA is always a subspace of Rn (i.e., is a vector space with the same
operations of Rn sitting inside of Rn.) We then started a running example in which we explicitly
described the kernel of a given matrix A as the set of all linear combinations of two vectors.

After the break, we defined what it means for vectors to be linearly independent, and we recall
the definition here. Definition: Vectors v1, · · · ,vk are called linearly independent if the only way
to write 0 as a linear combination of these vectors is to have the coefficients in this combo be zero
themselves (i.e., the so-called trivial way). More precisely, v1, · · · ,vk are linearly independent if

c1 · v1 + · · ·+ ck · vk = 0

has only the trivial solution c1 = · · · = ck = 0. We then pointed out the following equivalent
characterization: If v1, · · · ,vk are linearly independent, and

a1 · v1 + · · ·+ ak · vk = w = b1 · v1 + · · ·+ bk · vk
are two ways of writing a vector w as a linear combination of v1, · · · ,vk, then these must be
the same combination, i.e. a1 = b1, · · · ak = bk. We pointed out by showing (by hand) that the
standard basis vectors e1, · · · , en in R

n are linearly independent, and gave other examples as well
(recall that ei is the vector with 1 in the ith spot and zeroes elsewhere). We then stated the
following important criteria

How to check when vectors in R
n are linearly independent: Let v1, · · · ,vk be k vectors

in R
n, and let A =

[
v1 · · · vk

]
, i.e., A the matrix whose ith column is vi. Note that A will be

an k × n matrix.

• If k > n, then v1, · · · ,vk are never linearly independent.
• If k = n, then v1, · · · ,vk are linearly independent if and only if the determinant of A is

non-zero (note, since k = n, A will actually be a square matrix in this case)
• If k < n, then v1, · · · ,vk are linearly indepedent if and only if any matrix obtained by

taking k rows of A has non-zero determinant.

We stress the term any in the last point, because what the theorem is saying is that as long as
one of these k × k matrices has non-zero determinant, we are OK (i.e., the vectors are linearly
independent). In particular, if one such determinant is zero, you have to keep checking to see if you
can find a single non-zero one. If you can, the vectors are linearly independent; if you can’t, they
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are not linearly independent. To emphasize this point, we gave an example where some of these
determinants was zero, but others were not.

Finally, we defined the terms basis and dimension of a vector space V , we recall the definition
here: Definition: A collection of vectors v1, · · · ,vn is called a basis for the vector space V whenever
the following two conditions are satisfied.

• Every element of V can be written as a linear combination of the vectors v1, · · · ,vn.
• The vectors v1, · · · ,vn are linearly independent.

Another alternative definition (based on earlier observations) is the following: A collection of
vectors v1, · · · ,vn is called a basis for V if given any element of w of V , there are unique real
numbers a1, · · · , an such that

w = a1 · v1 + · · ·+ an · vn.
We made a big deal of pointing out that e1, · · · , en form a basis for Rn (called the standard basis
for Rn), and also found a basis our running example, a vector space given by the kernel of a matrix
A. We discussed at length how a given vector space can have more than one basis, and how there
is no natural choice for a basis. On the other hand, each basis must have the same number of
elements in it, and this number of elements is called the dimension of a vector space.

More precisely, we have the following definition: Definition: If v1, · · · ,vn is a basis for a vector
space V , then we say that V is n-dimensional (or has dimension n), and we write dimV = n. We
talked more about dimension and bases for vector spaces, and will talk next time about how to
find a basis for more exotic vector spaces (i.e., vector spaces of solutions to linear ODEs).

Lecture 13: Thursday, 10/10
Lecture today was covered by Priscilla; HW has been added to the course website.
Lecture was started by defining Rn as the collection of all column vectors (of size n); we also recalled
how to add vectors, an dhow to multiply a vector by a real number. We then defined the concept
of a linear combination of a collection of vectors, and explicitly saw how to write a given vector
as a linear combination of other vectors (and we also saw how to show establish when doing so
is impossible). Many of our examples focused on vectors in R

2 and R
3. We then took the quiz,

and then ended the course by stating the defining properties of a vector space. We’ll pick up
here next time. Note: In order not to fall behind during the break, students are urged to do the
assigned reading before our next meeting.

Lecture 12: Tuesday, 10/8
We began by recalling the basic facts of determinants. Note that many of the properties of deter-
minants that we’ve been discussing are far from obvious. Among the properties of matrices that
we discussed are the following:

(1) When computing determinants, you may expand down any row and column that you like
(keeping track of the signs of the terms appearing).

(2) When computing, it is better to simplify your matrices. In this case, it is crucial to remember
the way in each of the elementary row ops affects the value of the determinant you are trying
to compute. In what follows, suppose that B is obtained from A by a single elementary
row operation, so that A ∼ B, where “∼” represents a single row op.
• If “∼” is swapping rows, then detB = −detA.
• If “∼” is multiplying a row by a non-zero constant α, then detB = α · detA.
• If “∼” is adding a non-zero multiple of one row to another row, then detB = detA.

In addition to these, there are other importannt properties of matrices(e.g., the fact that the
determinant of a matrix is zero whenever the matrix contains two identical rows, etc.). We then
discussed the transpose of a matrix, and saw that the determinant of a matrix A equals the
determinant of its transpose AT . Since row ops on AT correspond to column ops on A, we see that
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the above list holds whenever “row” is replaced by “column.” After discussing further properties
of matrices (e.g., the amazing fact that |AB| = |A| · |B|) and some consequences (e.g., that
|A−1| = |A|−1), we concluded this discussion by giving a general formula for the inverse of a matrix
in terms of its minors that generalizes the well-known formula for 2× 2 matrices:

A−1 =
1

detA
·
[
(−1)i+jMi,j

]
,

where Mi,j denotes the i, jth minor of the matrix A.However, this formula is computationally
demanding, and so students may prefer to compute inverses of matrices using the algorith covered
in Lecture 10. Of course, you’ll only notice the difference when working with large matrices, and if
you find you like this formula, feel free to use it.

NOTE: Priscilla Elizondo (your TA) will be covering Lecture 13 on Thursday. We will be
covering more abstract material, and so it is very important that students read §4.1 and 4.2 before
coming to lecture.

Lecture 11: Thursday, 10/3
We listed 6 different characterizations of what it meant for a square matrix to be invertible, which
motivated our discussion of determinants. We recalled the definition of a determinant of a 2× 2
matrix, and then gave an inductive definition for the determinant of a general n× n matrix. Note,
by inductive, we mean the following: In order to compute the determinant of an n× n matrix, you
need to know how to compute the determinant of all 2×2, 3×3, · · · , (n−1)×(n−1) matrices. As an
example, we used the definition to show how to compute the determinant of a 3×3 matrix in terms
of determinants of 2 × 2 matrices. As noted by some students, this process can get quite tedious
and involve many computations, and we ended by mentioning that there are ways to “prepare” a
matrix so that the process of computing its determinant is easier. We didn’t get very far, and the
rest of the day was spent taking Midterm 1. Note: solutions have been posted, and students are
urged to look the solutions over before class on Tuesday.

Lecture 10: Tuesday, 10/1
We began the lecture by recalling a lot of the odd behavior that one sees when working with
matrices that one does not see when working with the more familiar number systems (i.e., the
R-world). Among the examples we saw was the failure of the cancellation property, as well as an
example where AB = 0 with neither A nor B being equal to zero. We also saw a couple of other
strange examples (some of these will come up again in the HW). In the midst of pointing out this
strange behavior, we made the following analogy:

• 0, the zero matrix, is to matrix addition as 0 is to addition of real numbers.
• 1, the identity matrix, is to matrix multiplication as 1 is to multiplication of real numbers.

Motivated by the situation over the real numbers, we made the following Definition: A square
matrix A is called invertible if there exists a matrix B such that AB = BA = 1. In this case, we
call B the inverse of A, and we often write B = A−1. After going through some examples, we saw
that certain matrices are not invertible, and so we were led to consider when a matrix is invertible,
and in the case that an inverse exists, we asked whether the inverse was unique. To this end, we
proved the following Theorem: If A is invertible, then its inverse is unique. Moreover, if A and B
are invertible, then AB is also invertible, and (AB)−1 = B−1A−1. The order here really matters!

Note that all of the “proofs” we gave were straightforward, and not very complicated (fortu-
nately). We then started to search for a criteria for checking whether a given matrix to be invert-
ible. In order to justify our criteria, we defined an elementary matrix to be a matrix obtained
from 1 via one elementary row operation, and we noted the following crucial point: If B is obtained
from A via a single elementary row op, and E is the elementary matrix corresponding to this op,
then B = EA; in other words, elementary row operations on A can be achieved through matrix
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multiplication by elementary matrices! Having observed this useful fact, we concluded with the
following Theorem: A is invertible if and only if the reduced form of A is equal to 1. Moreover,
to actually compute A−1 in this case, all we have to do is track the elementary row operations
needed to turn A into 1. In particular, we deduced the following Algorithm: If A is invertible,
then to compute A−1, form the matrix [A | 1] and perform elementary row ops until it is in the
form [1 | B]. In this case, B will be the inverse of A. Finally, we concluded with pointing out the
usefulness of inverses; e.g., if n× n coefficient matrix A associated to a linear system is invertible,
then system Ax = b, where x = (x1, · · · , xn) is a column vector of variables and b is a column
vector of real numbers, has the unique solution x = A−1b. We referred to this as “solving for x”
in class.

Lecture 9: Thursday, 9/26
We started by finishing up with §3.3. We begin by recalling the definitions of echelon form and
reduced echelon form. We then used reduced echelon form to study homogeneous systems of
linear equations (i.e., systems of linear equations with zeroes on the right hand side). In particular,
we noted the following: Theorem: A homogeneous system with more variables than equations
always has infinitely many solutions. Furthermore, a homogeneous system with as many variables
as equations has a unique solution (i.e., the trivial solution, consisting of setting all the variables
equal to zero) if and only if the reduced echelon form of the associated coefficient matrix is the
identity matrix. We then took the quiz.

After taking the quiz, we started discussing matrix algebra. In particular, we discussed how
to add matrices (of the same side), and how to multiply matrices by real numbers (basically,
everything is done component-wise). We also defined what it means to multiply a row times a
column, and used this to show how to multiply an m×p matrix by an p×n matrix to get an m×n
matrix. Knowing how to multiply matrices, we then started listing some of the properties of these
operations. Very quickly, we started to notice that a lot of “weird” things happen with matrices
that don’t happen with real numbers.

Lecture 8: Tuesday, 9/24
We started off by recalling how we used so called “permissable actions” to manipulate a system
of equations. After going over some examples, we got lazy and started omitting the variables
and equality sign from these systems, thus ending up with the so called coefficient matrix and
augmented matrix associated to a system of linear equations. We then noted that the permissable
actions on equations correspond to the following actions on matrices (often called elementary row
operations):

• Swap any two rows.
• Multiply a row by any non-zero constant.
• Add a multiple of a row to another row.

After this, we went through a bunch of examples; in each example, we illustrated how to run
Gaussian elimination to put a given matrix in so-called row echelon form. This method is
extremely important in this course, and students are advised to do the assigned HW (and extra
problems, if they want to sharpen their skills). As we noted, a matrix may have many different
row echelon forms (in fact, any matrix has infinitely many such forms). To remedy this, we defined
reduced echelon form (or reduced form, for short). The process of taking a matrix and using
elementary row and column operations to get it into reduced form is known as Guass-Jordan
elimination. We formally described this process, and ended up going over many examples. One
important benefit of considering reduced echelon form (as opposed to just echelon form) is the
following uniqueness result: Theorem: Given any matrix A, A has only one (i.e., a unique!)
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reduced echelon form. This is in analogy with fractions: there is many different ways to write a
fraction, but only one way in lowest terms (i.e., in reduced form).

We saw that by considering the reduced echelon form of a matrix, we can often give a pretty good
description of its solutions. For example, we saw the following: When an system of equations has
more variables than equations, the reduced echelon form will consist of a matrix whose first rows
have ones as their leading terms, and then whose remaining rows don’t. The variables corresponding
to rows with a leading term 1 will correspond to a so-called leading variable, while the remaining
variables are free. We gave a very concrete example of this at the end of class, and will pick up
next time considering this situation. The class is urged to do the assigned reading before the next
class, and are encouraged to visit their TAs or the math lab if they have any questions between
now and Thursday.

Lecture 7: Thursday, 9/19
Today, we begun the class by covering an old HW problem (§2.1, #9), which the grader mentioned
that many students had trouble with or skipped. We then proctored the first Super Quiz. After
this, we started discussing systems of linear equations. We did a bunch of examples, and noticed
that there is a bad method to solve linear equations (i.e., immediately solving for a variable and
then back substituting), and a better method involving manipulating systems of equations via the
following permissable actions:

• Multiply an equation by a (non-zero !) constant.
• Switch the order of the equations.
• Add a multiple of one equation to another equation.

We emphasized that, though these processes change the system of equations, they don’t actually
change the solutions; the key point here is that each of these operations can be undone, and therefore
solutions in one system and solutions in a system modified in these ways must remain the same.
We saw graphically what is happening as well. In each case, we were looking at the intersection
point of two lines, and we saw that, even though these permissable actions changed the lines we
were looking at, the intersection point remained the same. After discussing this at length, we then
saw a couple of examples of systems of equations (2 equations, 2 variables) that have no solution.
We’ll pick up here next time. Note: Students are urged to do the assigned reading before class,
so that they are familiar and not surprised by the material and pace of the next few sections.

Lecture 6: Tuesday, 9/17
Today, we covered sections 2.4, 2.5, and 2.6. Each section is dedicated to a different numerical
method for solving ODEs (which, in practice, are quite important, as we are very limited in the
types of differential equations we can solve explicitly). The main idea behind all three are the same.
If you have an IVP

dy

dx
= F (x, y), y(x0) = y0

then in order to estimate the value of y when x is increased from x0 to x0 + h (here, h is the
step size, and is thought of as “small”), you apply the FTIC (Fundamental Theorem of Integral
Calculus) to see that

y(x0 + h) = y0 +

∫ x0+h

x0

Fdx.

The tricky thing here is that the F in the integral sign involves both x and y, and so estimating this
integral will be slightly more involved than one might expect. The methods we used to estimate
this integral (left-hand rectangle rule, trapezoid rule, Simpson’s rule) lead to different numerical
approximations (e.g., Euler’s method, hEuler’s method, and the Runge-Kutta method). For the
convenience of the student, we recall these below:
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(1) Euler’s method
• k = F (x0, y0)
• Conclude: y(x0 + h) ≈ y0 + hk.

(2) hEuler’s method (aka Improved Euler’s Method)
• k1 = F (x0, y0)
• k2 = F (x0 + h, y + hk1) (the Euler estimate)
• k = 1

2 · (k1 + k2) (averaged slope)
• Conclude: y(x0 + h) ≈ y0 + hk

(3) RK method
• k1 = F (x0, y0) (slope at initial condition)
• k2 = F

(
x0 + 1

2 · h, y0 + 1
2 · h · k1

)
(the Euler estimate for slope at midpoint)

• k3 = F
(
x0 + 1

2 · h, y0 + 1
2 · h · k2

)
(second guess for slope at midpoint)

• k4 = F (x0 + h, y0 + h · k3) (estimate for slope at endpoint using k3)
• k := 1

6 (k1 + 2k2 + 2k3 + k4).
• Conclude: y ≈ y0 + hk.

We then computed a bunch of examples, and saw how repeated applications of these steps allows
us to divide up an interval to get better estimates. We also pointed out, via example, that though
the RK method seems to take more steps, it is actually much less work to achieve high accuracy
with RK than it is with Euler.

We concluded the class by starting a discussion of linear equations. Please make sure to read
about this before next time.

Lecture 5: Thursday, 9/12
The quiz today had a major typo (due to my incorrect transcribing!). While this didn’t cause issues
math-wise, it made the problem much simpler than I intended! The second part should have read:
Find a solution to the IVP

dx

dt
= x(x− 1) such that x(0) = 2.

Moreover, determine where the blowup happens (if it happens at all).
Assignment: Add this problem as Problem 0 on the HW assigned for Lecture 5.

After taking the quiz, we started by reviewing our earlier velocity-position models for horizontal
motion. First, we studied the (naive) case that FT , the total force is constant, and hence equal

to −mg. In this case, we re-derived the equations for velocity v = dy
dt and position y. Later, we

observed the following: In this model, the amount of time a projective spends ascending is the same
amount of time it spends descending. Furthermore, the initial velocity and the velocity at impact
are the same. Since these are not very realistic, we tried to do better.

We improved our model by considering the force of air resistance. In the first case, we considered
the situation when FR (the force of air resistance) was equal to −k · v, for some positive constant
k. Using this, Newton’s law states that

mv′ = FT = FG + FR = −mg − kv.

We first noted that this was an autonomous equation, and using phase diagrams, were able to
conclude that vτ = −ρ

g , where vτ denotes the terminal velocity, and ρ = k/m. Noticing that this

ODE could be turned into a first-order linear ODE, we were able to apply the techniques of Section
1.5 to solve explicitly for v and y. Having done so, we considered an example, and concluded that
this model appears to be more “realistic” when compared to our naive one.

Our next model called for changing our formula for air resistance so that it was proportional to
v2. Since FR should always have the opposite sign of v, this caused us to consider two cases:

• (Upward Motion) FR = −kv2, for some constant k > 0.
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• (Downward Motion) FR = kv2, for some constant k > 0.

In the second case, we used phase diagrams to compute the terminal velocity vτ = −
√

g
ρ . Next,

we examined the first case, and set up how to explicitly solve for v(t) and y(t). Using this outline
and the Ingredients discussed in class, you shouldn’t have too much trouble doing this (note: This
is Section 2.3, Problems 13, 14).

We then examined the force of gravity at large distances: If two bodies, of mass m and M ,
respectively, are a distance r apart, then the force of gravity is of the form ±GmM

r2
, where G is

a gravitational constant. Using this, we calculated that the escape velocity of the Earth. We
concluded by pointing out the interesting fact that this velocity is a constant (that is, doesn’t
really depend on the object being launched into space).

Lecture 4: Tuesday, 9/10
We began by reviewing the deficiences of the natural growth model, and recalled the definition of
the logistic equation for a population P , given by

dP

dt
= kP (M − P ) for some positive constants M,k.

Separating variables, we were able to explicitly solve this equation, and we noticed that, regardless
of the value of P0, all solutions eventually tended towards the equilibrium solution P = M . We
used this model to answer a question about the spread of rumors, but saw that it has many other
applications. We continued our discussion by considering the slightly modified model

dP

dt
= kP (P −M), where M,k are positive constants,

which we called the explosion/extinction model. We also solved this (and were once again careful
with the signs), and used our solution to determine the following: If P0 starts below P = M ,
then the population dies out (i.e., approaches zero). If P0 starts above the line P = M , then the
denominator in our expression for P has a t value where it becomes zero, and hence the function P
blows up as t approaches this value. We saw that the point where the function blew up depended
on P0.

We next started §2.2, and began by defining an autonomous first order ODE (the two models
considered above where in this class of ODEs). We discussed how, via drawing phase diagrams (I
mistakenly called these phase portraits in class), we were able to understand a lot of the quantitative
behavior of an autonomous ODE without actually solving it! We concluded by considering a logistic-
harvesting example, i.e., an equation of the form dx

dt = kx(M − x) − h, where here k,M, h are all
positive constants. The new addition is the harvesting constant h, which is typically small relative
to k and M . We then outlined the following steps to solve a harvesting problem (you’ll need this
on your quiz).

(1) Factor the right hand side of your autonomous ODE (using the quadratic formula), so that
it is of the form dx

dt = −(x − A)(x − B) for some A,B. Here, you’ll need that h is small
so that these A and B actually exist (i.e., you get no imaginary roots from the quadratic
equation).

(2) From here, you may draw a phase diagram to understand the qualititative behavior.
(3) If you need to explicitly solve this, you can separate variables!

Lecture 3: Thursday, 9/5
We started off by reviewing our solution to the general first-order linear ODE, and then stated a
theorem regarding the uniqueness of these solutions. We then did some examples to warm up, and
then the class took Quiz 1. After this, we discused input/output problems in some detail. Recall,
of all of the relevant data (i.e., ri, ci, r0, c0, V ) typically we have that ri and ci are constant, and
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whether or not V is constant or not is dictated by the context: assuming ri and r0 are constant,
then V is constant if ri = r0, and otherwise V = (ri− r0) · t. HOWEVER, c0 is never constant, and

is equal to x(t)
V (x(t) being the quantity of the material of interest at time t). In order to better

digest this material, we went over a bunch of examples.
After the break, we begun discussing §2.1. The point was that the “natural growth” model that

we used earlier to describe population changes isn’t the most realistic (e.g., doesn’t contain any
non-zero horizontal asymptotes, assumes that birth/death rates are constant, etc). In seeking more
realistic models (e.g., where the death rate was constant but the birth rate was a linear function
of population), we arrived at the following equation

dP

dt
= KP (M − P ),

where K and M are constants. This equation is called the logistic equation. We saw some examples,
and gave a hint at how to find the general solution (hint: partial fractions). We’ll pick up here
next time, and the class is urged to do their assigned reading before Tuesday.

Lecture 2: Tuesday, 9/3
We begun the class by recalling the definition of a separable ODE. After this, we continued our
applications of separable ODEs; in particular, we worked through problems illustrating the use of
the the natural growth / decay equation in the context of population estimate problems, half-life
type problems, and problems relating to Newton’s Law of Cooling/Heating. After going through
these examples, we concluded our treatment of §1.4.

We began §1.5 by defining a first order, linear ODE, and presented the example y′−y = 11
8 ·e
− 1

3
·x.

After struggling to find/guess a solution for a while, I decided to multiply both sides of the equation
by e−x, and then we witnessed magic in the form of rewriting the LHS of the ODE using the product
rule! During break, we pondered why I had chosen to multiply both sides by e−x.

After this, we outlined a general method to solve first order linear ODEs

y′ + P (x) · y = Q(x),

which we recall here:

(1) First, compute w(x) =
∫
P (x)dx. Note that it is not necessary to include the constant (i.e.,

you may omit “+C” in this computation).

(2) Next, multiply both sides of your ODE by ew(x).
(3) Look hard, and rewrite the LHS of your ODE using the product rule.
(4) All you have to do is integrate, and then solve for y.

In fact, before describing this process, we actually proved it worked! Though the process itself
may appear complicated, the only “ingredients” needed to derive it were: the product rule, a
special instance of the chain rule, and the fundamental theorem of integral calculus (i.e., the fact
that derivatives and integrals cancel each other out, so to speak). Though our presentation was a
straightforward application of these fundamental facts, students should be aware that this derivation
(or “proof”) will not appear on any exams or quizzes. We concluded the class by working through
a number of examples, and will pick up here next time. Students are advised to read ahead in
Section 1.4 and start Section 2.1 reading.

Lecture 1: Thursday, 8/29
After some review, we started discussing the fact that we can’t really solve many ODEs (even
simple looking ones), and we then pointed out the usefulness of slope fields. Using slope fields,
we were able to determine the qualitive behavior of some solutions to ODEs without knowing the
formula for a solution. In case you are interested, the website I used to compute slope fields is

http://math.rice.edu/~dfield/dfpp.html;
16

http://math.rice.edu/~dfield/dfpp.html


note that you will need to have Java enabled on your browser to use this. Recall that slope fields
may only be computed for ODEs of the form y′ = F (x, y), and so are limited in their application.

Continuing with §1.3, we recalled the examples we have seen, where ODEs have none/infinitely
many/ a unique solution, and asked whether we can tell ahead of time when these possibilities
might occur. In particular, we focused on the following Question: Given an IVP of the form
y′ = F (x, y) with (x, y) = (a, b), when does there exist a unique solution? We stated a theorem
(see your text) which answered this question. We also spent a good amount of time pointing out
the subtle fact that, even when we know that a solution exists, we don’t know ahead of time what
the domain of the solution will be. More precisely, when we know that a unique solution y to the
ODE exists, all that we can say is that y is a function of x, and is defined in a neighboor of x = a
(our initial condition), but not much else. We then gave examples to illustrate this subtle point.
We concluded §1.3 by giving an example of an IVP that had infinitely many solutions (note: this
is the first example of this kind that we’ve seen so far in lecture).

After the break, we started §1.4, which examines separable ODEs, i.e., equations of the form

y′ = g(x) · h(y),

where here g(x) is a function involving only x’s, and h(y) is a function involving only y′s. Recall

that, writing y′ = dy
dx , and by multiplying/dividing as necessary, we are always able to isolate all

expressions involving y on the LHS (left hand side) of the equation, and isolate all expressions
involving x on the right hand side. At this point, all one needs to do is integrate. We saw the
following types of behavior:

• Following this method, we are sometimes able to find a explicit general solution.
• Other times, we may arrive at an equality involving y and x (and not y′), but are still

unable to solve for y, due to the complexity of the equation. In this situation, we have
arrived at an implicit solution.
• Lastly, we observed how some initial solutions (which we call singular solutions) may

disappear when we proceed with the method of solving by separating of variables. What is
happening here is that information is lost when dividing (so be careful).

We concluded with some real-world applications. In particular, we derived the formula for expo-
nential growth from a separable ODE, and talked about some consequences. NOTE: Students
are expected to continue reading the rest of §1.4 on their own (we will continue with
this a bit next week).

Lecture 0: Tuesday, 8/27
After some technical difficulties (!), we went over the syllabus and course overview for the course.
After this, we got down to business and started with $ 1.1. We began by defining the term “ODE”
(ordinary differential equation), and gave a lot of examples and non-examples, to clarify things.
Afterwards, we looked at some simple ODEs, and were able to guess solutions to some of them.
However, we also saw that, even if the ODE looks simple, one may not always be able to guess a
solution. In our exploration, we encountered ODEs that have infinitely many solutions, as well as
ODEs that have no solution. We also noted that even if we can’t (yet!) solve anything but the
simplest ODEs in our head, we can always verify whether or not a given function is a solution. We
then did more examples.

For the second half of lecture, we covered the material in §1.2. Our main observation here was
that, via integration, we can (in theory) solve differential equations of the form

y′ = f(x),

where here y is an unknown function of x. Repeated applications of this allowed us to deduce
standard formulas (from physics) that describe the motion and velocity of a projectile with constant
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acceleration. Note: The case of non-constant acceleration is dealt with similarly, and will appear
on one of your HW problems. In doing this, we noted that through repeated integration, we could
solve differential equations of the form

y(n) = f(x)

for any value of n, generalizing our intial approach.
Announcement regarding the text: I was able to verify with the Associate Chair of the

math department that the 3rd edition of Edwards and Penney should suffice for this course (many
of you asked about this in class). It still might be a good idea to get the text in the bookstore, as
it will be used in future math classes (see the course syllabus for details).
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