1. Let $\text{hom} : \mathbb{C}[x, y] \to \mathbb{C}[x, y, z]$ be the homogeneization function (mapping a polynomial $f(x, y)$ to its homogeneization $F(x, y, z)$), and let $\text{dehom} : \mathbb{C}[x, y, z] \to \mathbb{C}[x, y]$ be the de-homogeneization function. Is dehom a left inverse of hom? Is it a right inverse?

2. Apply the Fundamental Theorem of Algebra to prove that every homogeneous polynomial $F(x, y)$ in two variables, with complex coefficients, factors as a product of linear polynomials $F(x, y) = \prod (\alpha_i x + \beta_i y)$.

3. Let L be a line in $\mathbb{P}^2_\mathbb{R}$, defined by $ax + by + cz = 0$. Find a projectivity $\phi : \mathbb{P}^2_\mathbb{R} \to \mathbb{P}^2_\mathbb{R}$ that maps L into the line of equation $z = 0$. (That is, find a 3×3 matrix M representing the projectivity ϕ.) Conclude that if L is any line in $\mathbb{P}^2_\mathbb{R}$, then the complement $U = \mathbb{P}^2_\mathbb{R} \setminus L$ is equal to \mathbb{R}^2.

4. Let C be the conic in $\mathbb{P}^2_\mathbb{R}$ defined by $y^2 = xz$. Sketch C with respect to the “triangle” in $\mathbb{P}^2_\mathbb{R}$ given by the three coordinate lines $x = 0$, $y = 0$, $z = 0$. Find the equations of three lines L_1, L_2, and L_3 in $\mathbb{P}^2_\mathbb{R}$ such that, denoting $U_i = \mathbb{P}^2_\mathbb{R} \setminus L_i$ (for $i = 1, 2, 3$), C restricts to:
 - a parabola in U_1,
 - an ellipse in U_2,
 - a hyperbola in U_3.

5. Prove that any non-degenerate conic C in $\mathbb{P}^2_\mathbb{C}$ is defined by $y^2 = xz$ for a suitable choice of homogeneous coordinates $(x : y : z)$. Is the same true in $\mathbb{P}^2_\mathbb{R}$? Explain.

6. Let P_1, P_2, P_3 be three distinct points on a line L in $\mathbb{P}^2_\mathbb{C}$. We say that the points are collinear. Use Bertini Theorem (in the form already proved in class) to show that if a conic C passes through these three points, then it contains the whole line. Deduce that C is degenerate.

7. We saw in class that the space of conics in $\mathbb{P}^2_\mathbb{C}$ passing through four general points P_1, P_2, P_3, P_4 is 1-dimensional. Show that if the four points are collinear (that is, on a line), then the space of conics through them is 2-dimensional.

8. In the book of M. Reid, subsection (1.12) (pages 20–21) there is a list of all possible ways in which two conics may intersect. In each case, the two conics generate a 1-dimensional family of conics. Write down equations to show that each possibility really occurs. Find all the singular conics in each family. [Hint: In each case, make a smart choice of homogeneous coordinates.]

9. Prove that a curve of degree 4 with four or more singular points is reducible.

10. Consider the curve C of equation $x^6 + y^6 - x^2 y^2 = 0$.
 - Establish whether C is irreducible or not.
 - Determine all singular points of C and their multiplicity.
 - Sketch C in \mathbb{R}^2.
 [Hint: Use the symmetries of C in your arguments.]