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Introduction

There notes were written to accompany my lectures at the VIGRE minicourse on
“Arc Spaces and Motivic Integration”, held at the University of Utah in May 2005. The
main goal of these lectures is to discuss how motivic integration, if performed in the
relative setting, can actually capture invariants such as Chern classes.

The first two lectures are devoted to a discussion of MacPherson’s construction
of Chern classes of singular varieties. We will start with reviewing the definition of
Chern classes of complex manifolds and their extensions to singular varieties proposed
by Mather and Schwartz-MacPherson. Then we will focus on the work of MacPherson in
which he constructs a natural transformation from the functor of constructible functions
to homology (or Chow groups), proving a conjecture of Deligne and Grothendieck. It
is using this transformation that MacPherson proposes his theory of Chern classes for
singular varieties.

The use of motivic integration to construct a new generalization of Chern classes to
singular varieties is motivated by a recent result of Aluffi, where it is proven that Chern
classes of smooth varieties behave well under certain birational modifications. Indeed
one can show with explicit examples that this particular birational property is lost in the
singular case if one considers Schwartz-MacPherson classes. This will be our motivation
for what comes next.

Aiming for a theory of Chern classes that is birationally well-behaved (i.e., with a
“stringy” flavor), we will apply the theory of motivic integration over a base and explain
how one can extract a constructible function (defined over the base) from any given
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relative motivic integral. This is the content of the third lecture. Most of the technical
ingredients of the general theory of motivic integration will be only sketched or quoted.
Instead, the attention will be focused on the use of the theory in the relative setting, and
the geometric process leading to extract constructible functions from motivic integrals
will be explained in detail.

The various material covered so far is then combined in the forth lecture, where
stringy Chern classes are introduced and studied. The basic idea of the construction
is to apply MacPherson’s transformation to certain constructible functions naturally
arising (via motivi integration) from resolution of singularities. Explicit examples will
be presented to compare stringy Chern classes with Schwartz-MacPherson class. Using
formal properties of motivic integration, we will investigate the main properties of these
classes.

The last lecture is devoted to a discussion of stringy invariants for quotient va-
rieties: this is a beautiful part of the story, related to a classic problem known as the
“McKay correspondence”. The general principle is that the stringy invariants of the quo-
tient variety, which are defined through resolution of singularities, are already encoded
(in some way) in the equivariant geometry of the manifold of which we are taking the
quotient. This not only is an amazing phenomenon per se, but also provides explicit
formulas to compute these invariants. It can arguably be said that stringy invariants
made their first appearance in this context.

Several exercises are proposed throughout, the main purpose being in most cases
that of giving some concrete feeling to the reader new to the subject of what the various
constructions and definitions are all about.

0.1. Acknoledgements. It is a pleasure to tank the organizers of the minicourse, Aaron
Bertram and Christopher Hacon, for offering me the opportunity of delivering these
lectures, and for providing such a nice and enjoyable stay in Salt Lake City for the
period of the course.

I wish to thank Bertram and Hacon, the other lectures of the course, Manuel
Blickle, Giulia Jordon and Wim Veys, and all the participants of the course, for many
friutful conversations and several comments and corrections that helped me improving
the exposition of these notes.

This material is based upon work supported by the National Science Foundation
under agreements No. DMS-0548325 and DMS-0111298, by the University of Michigan
Rackham Research Grant, and by VIGRE (?). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

0.2. Notation and conventions. We work over the field of complex numbers. By
scheme we will mean an algebraic scheme of finite type over SpecC. A variety is an
integral scheme, and a manifold is a smooth variety. Subschemes and subvarieties are
always assumed to be closed. A Q-divisor on a normal variety is a Q-Cartier Q-divisor,
namely a rational combination of Weil divisors, a multiple of which is Cartier.

Finally, faithfully to the European origins of the author, the set of natural numbers
N includes zero.
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0.3. Temporary disclaimer (!) This is still a preliminary version, only distributed
to the participants of the course. Some–hopefully most–of the errors and typos in the
previous version have been corrected. Many things are still lacking, among which some
of the attributions of the credits for the various results and remarks presented here, more
comparisons with other works, and a complete list of references. Brief introductions to
each lecture will also be included.

Comments, corrections and suggestions are of course very welcome.

Lecture 1. Mather’s and Schwartz-MacPherson’s Chern classes of singular
varieties

1.1. The Chern class of a manifold. We start by recalling a few definition from
intersection theory, referring the reader to [Ful] for a full treatment and several of the
properties that will be used here.

Let X be a scheme. We denote by Z∗(X) the free abelian group generated by
(closed) subvarieties of X. An element α of Z∗(X) is called a cycle on X, and can be
written in a unique way as a finite linear combination

α =
k∑
i=1

ni[Vi]

where ni ∈ Z and Vi are subvarieties of X. Then the Chow group of X is the quotient of
Z∗(X) by rational equivalence:

A∗(X) := Z∗(X)/ ∼rat .

We recall that a cycle α ∈ Z∗(X) is rational equivalent to zero if and only if there
are subvarieties W1, . . . ,Wt ⊆ X × P1 such that, denoting by pr2 : X × P1 → P1 the
projection onto the second factor and fixing two distinct points 0 and ∞ in P1, we have

α =

t∑
j=1

[(pr2 |Wj )
−1(0)]− [(pr2 |Wj )

−1(∞)]

in Z∗(X).
When X is proper, taking the degree of a zero-dimensional cycle gives a map

deg : A0(X)→ Z. The degree of any cycle α ∈ A∗(X) is then defined to be the degree of
it zero-dimensional part, and is denoted by any of the symbols degα,

∫
X α, or just

∫
α.

Consider now a vector bundle E over X, and let r be the rank of E. Associated
to E, there is the total Chern class of E: this is the sum

c(E) = 1 + c1(E) + · · ·+ cr(E),

where each ci(E) is defined as an operator on the Chow group A∗(X), the operation
being given by cap products

ci(E) ∩ − : Ak(X)→ Ak−i(X).

We refer to [Ful, Section 3.2] for the definition of these operations.
Product of Chern classes of vector bundles (over the same scheme X) is defined

by composition, by setting

ci(E) · cj(E′) ∩ − : Ak(X)
ci(E)∩−−−−−−→ Ak−i(X)

cj(E
′)∩−−−−−−−→ Ak−i−j(X).
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We recall that if L is a line bundle and i : V ↪→ X is a subvariety, then c1(L) ∩ [V ] =
i∗[div(sV )], where sV : V 99K L|V is any non-trivial rational section of the restriction
L|V of L to V . Then, using the splitting principle [Ful, Section 3.2], Chern classes of
vector bundles are characterized by the condition

c(E) = c(E′) · c(E′′)
for any short exact sequence of vector bundles

0→ E′ → E → E′′ → 0.

Moreover, if E is a globally generated vector bundle on a quasi-projective n-dimensional
variety X and sj ∈ Γ(X,E) are general sections, then

ci(E) ∩ [X] = [{x ∈ X | s0(x), . . . , sr−i(x) are linearly dependent}] ∈ An−i(X).

If X is a smooth variety and TX is the tangent bundle of X, then we obtain the
class

c(X) := c(TX) ∩ [X] ∈ A∗(X).

We call this class the Chern class of X. We recall that, if X is a proper smooth variety,
then ∫

X
c(X) = χ(X) :=

∑
i

(−1)i dimH i(X,Z).

the topological Euler characteristic of X. Moreover, assuming that X is a smooth pro-
jective variety with globally generated tangent bundle TX, so that X admits sufficiently
general (holomorphic) vector fields, we obtain a geometric interpretation of the Chern
class c(X) in terms of the degeneracy loci of the vector fields. In particular, we recover
the following well known fact:

χ(X) = #{zeroes of a general vector field on X}.
We close this section with a comment of the notation. The choice of the symbol

c(X) to denote this class is not standard, and the term “Chern class” (or “total Chern
class”) of X is often used in literature for the class c(TX) rather than its value on [X].
One should think at c(X), as defined above, as the Poincaré dual of the cohomological
Chern class of X. The reason of our choice relies on the fact that we will discuss several
extensions to singular varieties of the notion of Chern class of a manifold, and all of them
can only be given in some homological theory of the given variety. More precisely, all
these extensions will be defined as elements in the Chow group of the variety (in some
cases allowing rational coefficients).

1.2. The Nash blowup and Mather’s Chern class. Let X be an n-dimensional
variety, and assume that X is embedded in a manifold M . If Gn(TM) is the Grassmann
bundle over M of rank n subbundles of TM , the map

x 7→ (TxX ⊆ TxM) ∈ Gn(TM)x,

defined for every x ∈ Xreg, gives a section from the smooth locus of X to Gn(TM).

The Nash blowup X̂ of X is the closure in Gn(TM) of the image of this section. The
projection to the base induces a morphism

ν : X̂ → X.
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It is a fact that (in characteristic zero, hence in our setting) this morphism is locally
an isomorphism precisely over the smooth locus of X [Nob]. Moreover, if X is locally
complete intersection, then the Nash blowup agrees with the blowup of the Jacobian
ideal of X [Nob]; in particular the previous property also follows, in this case, from [Lip].
In general, the Nash blowup does not depend on the particular embedding chosen; in
fact, it is even possible to define the Nash blowup without the use of any embedding.

Remark 1.2.1. One can construct the Nash blowup of X by thaking the closure of the
natural section Xreg → PX(∧nΩ1

X) of the projection PX(∧nΩ1
X) → X (see for instance

[dFEI]).

Exercise 1.2.2. By considering the case of cones over smooth plane curves, argue that
the Nash blowup needs no be smooth nor normal.

Throughout the above construction, X̂ comes naturally equipped with a rank

n vector bundle, that we denote by T̂ . This is given by the restriction to X̂ of the
tautological vector bundle ξ over Gn(TM) (we recall that the latter is the subbundle
of the pullback of TM on Gn(TM) whose fiber over a point (V ⊆ TpM) ∈ Gn(TM) is

given by V ). By construction, T̂ agrees with (the pullback of) the tangent bundle of the
smooth locus of X.

The Chern-Mather class (or simply Mather class) of X is then defined to be the
class

cMa(X) := ν∗(c(T̂ ) ∩ [X̂]) ∈ A∗(X).

If X is smooth, then X̂ = X, hence cMa(X) := c(X).

Exercise 1.2.3. Describe the Nash blowup of a nodal (resp. cuspidal) plane cubic
C ⊂ P2, and compute its Mather class.

Observe that the dual of T̂ is a locally free quotient subsheaf of ν̂∗Ω1
X . In concrete

examples, it may be useful to use the following definition. A generalized Nash blowup of

a variety X is any variety X̃ that comes equipped with a proper birational morphism

ν̃ : X̃ → X and a locally free quotient

ν̃∗Ω1
X → Ω̃→ 0

of rank n = dimX. Observe that, if ν̃ : X̃ → X is a generalized Nash blowup and T̃

is the dual bundle of Ω̃, then for any embedding of X in a manifold M the bundle T̃ is
a subbundle of ν̃∗TM extending the pullback of TXreg|U , where TXreg is the tangent
bundle of the smooth locus Xreg of X and U ⊆ Xreg is the open subset onto which ν̃ is
an isomorphism.

The Nash blowup X̂ can be equivalently described as the closure, in the Grassmann
bundle over M of rank-n locally free quotients of Ω1

M , of the natural section defined over

the smooth locus of X. In particular ν̂ : X̂ → X is a generalized Nash blowup. In fact,

we have the following property: a proper birational map ν̃ : X̃ → X is a generalized

Nash blowup if and only if it factors through the Nash blowup ν̂ : X̂ → X:

X̃
η //

ν̃   A
AA

AA
AA

A X̂

ν̂
��
X.
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Note that T̃ = η∗T̂ . Then the projection formula implies that

ν̃∗(c(T̃ ) ∩ [X̃]) = cMa(X)

for any generalized Nash blowup ν̃ : X̃ → X.

Exercise 1.2.4. Argue that the normalization f : X ′ → X of the Whitney umbrella
X = {x2 = y2z} ⊂ A3 is not a generalized Nash blowup. Conclude that a resolution of
singularities of a variety needs not satisfy the requirements in the definition of generalized
Nash blowup.

1.3. MacPherson’s transformation and Schwartz-MacPherson’s Chern class.
Let X be a variety. For any subvariety V ⊆ X, we define the characteristic function of
V to be the function

1V : X → Z, 1V (x) =

{
1 if x ∈ V ,

0 otherwise.

Then the group of constructible functions of X is the subgroup F∗(X) of the abelian
group of Z-values functions on X freely generated by the characteristic functions of the
subvarieties of X. An element φ ∈ F∗(X) is called a constructible function of X, and
can be (uniquely) written in the form

(1.3.1) φ =

k∑
i=1

ni1Vi ,

where Vi are subvarieties of X and ni ∈ Z. Clearly, F∗(X) ∼= Z∗(X) as Z-modules.

Exercise 1.3.1. Using descending induction on the dimension of the Vi, show that the
expression of φ in (1.3.1) is unique (this amounts to say that F∗(X) is freely generated
by the characteristic functions 1V as V ranges among the subvarieties of X). Observe
that unicity fails if we drop the requirement that the Vi be closed in X.

Exercise 1.3.2. The support of any constructible function on X is a constructible sub-
set, namely, a finite union of locally closed subsets of X. Show that, conversely, the
characteristic function of any constructible subset of X is a constructible function.

It is sometimes convenient to consider F∗(X) as a ring, with the product defined
pointwise. For instance, for two subvarieties V and W of X, we have 1V · 1W = 1V ∩W .
Then F∗(X) is a commutative ring with zero element 1∅ (the constant function 0) and
identity 1X (the constant function 1).

Consider now a morphism f : X → Y . For every subvariety V ⊆ X, we define the
function

f∗1V : Y → Z, f∗1V (y) := χc(V ∩ f−1(y)),

where χc denotes the Euler characteristic with compact support (i.e., computed using
cohomology with compact support). It follows by a theorem of Verdier [Ver, Corol-
laire (5.1)] that f |V is piecewise topologically locally trivial over a stratification of X in
Zariski-locally closed subsets. This implies that

f∗1V ∈ F∗(Y ).

Extending by linearity, we obtain a group homomorphism f∗ : F∗(X)→ F∗(Y ).
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The Euler characteristic satisfies the following two properties:

χc(X) =
∑

χc(Xi)

for any decomposition of a variety X into a disjoint union X =
⊔
Xi of locally closed

subsets, and

χc(Z × Z ′) = χc(Z)χc(Z
′)

for any two varieties Z and Z ′. Therefore, by the above mentioned result of Verdier, we
have (g ◦ f)∗ = g∗ ◦ f∗ for any morphism g from Y to a third variety Z. Therefore we
obtain a functor

F∗ : X 7→ F∗(X), (X
f−→ Y ) 7→ (F∗(X)

f∗−→ F∗(Y )),

from the category of varieties and morphisms to the category of abelian groups and
homomorphisms.

If f : X → Y is a proper morphism, then we also have a push-forward of Chow
groups f∗ : A∗(X) → A∗(Y ). The theorem of MacPherson is the existence of a natural
transformation between the functors F∗ and A∗ over the category of varieties and proper
morphisms with the additional property that, on a smooth variety X, it assigns to 1X
the Chern class of X.

Theorem 1.3.3 ([Mac]). For any variety X, there exists a group homomorphism c∗ :
F∗(X)→ A∗(X) such that the diagram

F∗(X)

f∗
��

c∗ // A∗(X)

f∗
��

F∗(Y )
c∗ // A∗(Y )

commutes for every proper morphism f : X → Y and

c∗1X = c(X)

whenever X is smooth.

We will refer to c∗ as the MacPherson’s transformation. The existence of such
transformation was conjectured by Deligne and Grothendieck.

Granting its existence, c∗ is uniquely determined by the conditions stated in the
theorem. To see this, let φ ∈ F∗(X) be an arbitrary element. We can write

φ =

k∑
i=1

bi gi∗1Wi ,

where gi : Wi → X is the resolution of the closure of an irreducible component of the
support of φ −

∑i−1
j=1 bj gj∗1Wj and bi is a suitable integer. Then, using the conditions

that c∗ is supposed to satisfy, we compute

c∗φ =

k∑
i=1

bi c∗gi∗1Wi =

k∑
i=1

bi gi∗c∗1Wi =

k∑
i=1

bi gi∗c(Wi).
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The Chern-Schwartz-MacPherson class (or simply Schwartz-MacPherson class) of
an arbitrary variety X is then defined by

cSM (X) := c∗1X ∈ A∗(X).

Exercise 1.3.4. Let X be a proper variety. Show that∫
X
cSM (X) = χ(X).

Clearly cSM (X) = c(X) if X is smooth. However, in general this class differs from
the Mather class when X is singular.

Exercise 1.3.5. Compute the Schwartz-MacPherson class of a nodal plane cubic C ⊂
P2, and show that it does not agree with the Mather class. Then determine the difference
between cMa(X) and cSM (X) when X is the projective closure of the cone over a smooth
plane curve of degree d.

Using Mather classes, we obtain a homomorphism

cMa : Z∗(X)→ A∗(X), [V ] 7→ i∗cMa(V ),

were V ranges among the subvarieties of X and i is its inclusion in X (note that i∗ :
A∗(V ) → A∗(X) is well defined because i is proper). On the other hand, we have
observed that there is a natural isomorphism R : Z∗(X)→ F∗(X) that to each cycle [V ]
represented by a subvariety V ⊆ X associates the characteristic function 1V . Combining
these two, we obtain a homomorphism cMa ◦R−1 : F∗(X)→ A∗(X) which clearly maps
1X to c(X) if X is smooth. However this cannot be equal to c∗ because it is not natural,
in the sense that it does not commute with direct images under proper morphisms. The
substance in the construction of MacPherson’s transformation is precisely to correct this
lack of naturality; this will be done by a choice of a different isomorphism Z∗(X) →
F∗(X), which may be thought as a “change of basis”. This will be the content of the
next lecture.

Exercise 1.3.6. Give an example of a proper map f : X → Y such that

(cMa ◦R−1) ◦ f∗ 6= f∗ ◦ (cMa ◦R−1)

as homomorphisms from F∗(X) to A∗(Y ).

Lecture 2. Construction of MacPherson’s transformation

2.1. The local Euler obstruction. The crucial definition in the construction of
MacPherson’s transformation is that of local Euler obstruction. Although different from
the original one, we give here a intersection theoretic definition of this invariant, and
refer to [Mac] for the original definition and to [G-S] for the equivalence of the two.

Recall that the Segre class s(Z, Y ) of a proper subscheme Z of a scheme Y is
computed as follows. Take the blowup g : Y ′ → Y along Z and let E be the exceptional
divisor of g. Then

s(Z, Y ) = (g|E)∗
∑
j≥1

(−1)j−1[Ej ] ∈ A∗(Z),
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where for short we have denoted [Ej ] := c1(OE(E))j−1 ∩ [E]. If Z is regularly embedded
in Y and NZ/Y is the normal bundle, then we also have

s(Z, Y ) = c(NZ/Y )−1 ∩ [Z].

Exercise 2.1.1. Check the equivalence of the two formulas for s(Z, Y ) when Z is a
Cartier divisor.

Let X be a variety, let ν : X̂ → X be its Nash blowup, and fix a point p. Then
the local Euler obstruction of X at p is the number

Eup(X) :=

∫
c(T̂ |ν−1(p)) ∩ s(ν−1(p), X̂),

where s(ν−1(p), X̂) is the Segre class of ν−1(p) in X̂. If σ : Blp X̂ → X̂ is the blowup

along ν−1(p) and D ⊂ Blp X̂ is the exceptional divisor of the blowup, then the projection
formula gives

Eup(X) =

∫
c(σ∗T̂ |D) ∩ (

∑
j≥1

(−1)j−1[Dj ])

Observe that the definition is local in nature, in the sense that if X is locally irreducible
at p and U ⊂ X is any open neighborhood of p, then Eup(X) = Eup(U). Moreover, if X
is locally reducible at p and Ui are the irreducible components of an open neighborhood
U ⊂ X of p, then we have Eup(X) =

∑
Eup(Ui).

The local Euler obstruction can be computed using any generalized Nash blowup
in place of the Nash blowup.

Proposition 2.1.2. Let ν̃ : X̃ → X be a generalized Nash blowup of X. Then

Eup(X) =

∫
c(T̃ |ν̃−1(p)) ∩ s(ν̃−1(p), X̃).

Proof. Let η : X̃ → X̂ be the induced morphism. We have η∗T̂ = T̃ and

η∗s(ν̃
−1(p), X̃) = s(ν̂−1(p), X̂), hence

η∗c(T̃ |ν̃−1(p)) ∩ s(ν̃−1(p), X̃) = c(T̂ |ν̂−1(p)) ∩ s(ν̂−1(p), X̂)

by projection formula. Then the assertion follows by taking degrees. �

Exercise 2.1.3. Show that Eup(X) = 1 if X is smooth at p, and that if q is a m-ple
point of a curve C, then Euq(C) = m.

A proof of the following proposition can be found in [Ken, Lemma 4].

Proposition 2.1.4. The function

Eu−(X) : X → Z

that assigns to each point p ∈ X the local Euler obstruction Eup(X) is constructible (that
it, is an element in F∗(X)).

Exercise 2.1.5. Let X be the cone over a smooth plane curve of degree d ≥ 2, and
let p ∈ X be the vertex. Show that Eup(X) = 2d − d2. Conclude that the function
Eu−(X) : X → Z needs no be positive nor upper semi-continuous.
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Using the local Euler obstruction, we define a group homomorphism

T : Z∗(X)→ F∗(X)

by assigning to each class [V ] ∈ Z∗(X) represented by a subvariety V ⊆ X the function

Eu−(V ) : X → Z, p 7→ Eup(V ),

where we set Eup(V ) = 0 if p 6∈ V . In other words, T is defined by

T
(∑

mi[Vi]
)

=
∑

mi Eu−(Vi)

for mi ∈ Z and Vi ⊆ X subvarieties. Proposition 2.1.4 implies that this is a constructible
function.

Lemma 2.1.6. T is an isomorphism.

Proof. It suffices to check that the functions Eu−(V ) form a basis for F∗(X) as V ranges
among the subvarieties of X. �

By composing T−1 with the homomorphism cMa introduced in Section 1.3, we
obtain the homomorphism

(2.1.1) c∗ := cMa ◦ T−1 : F∗(X)
T−1

−−→ Z∗(X)
cMa−−→ A∗(X).

We need to prove that c∗ satisfies the requirements listed in Theorem 1.3.3. It is clearly
an homomorphism mapping 1X to c(X) whenever X is smooth, so what is left to show
is that

(2.1.2) f∗c∗ = c∗f∗

for every proper morphism f . The proof of this property is outlined in the following two
sections.

2.2. The graph construction. Given a proper morphism f : X → Y , where X is a
smooth variety, we will construct a cycle

α =
∑

ni[Vi] ∈ Z∗(Y ),

where Vi ⊆ Y are subvarieties, such that

(2.2.1) cMa(α) = f∗c(X) in A∗(Y ), and T (α) = f∗1X in F∗(Y ).

Before we proceed with the construction of this cycle, let us explain why the above
formulas imply the identity (2.1.2) for any proper morphism of varieties f : X → Y .
Given this general situation, for any φ ∈ F∗(X) we can find proper morphisms gi : Wi →
X with Wi smooth varieties, and integers bi, such that

φ =
∑

bi gi∗1Wi .

Note that, if c∗ is defined as in (2.1.1) and we assume that (2.2.1) holds for morphisms
from smooth varieties, then we have

(2.2.2) gi∗c∗1Wi = c∗gi∗1Wi and f∗gi∗c∗1Wi = c∗f∗gi∗1Wi .

Therefore, applying f∗c∗ to the expression defining α and using these identities, we get

f∗c∗φ =
∑

bi f∗c∗gi∗1Wi =
∑

bi f∗gi∗c∗1Wi =
∑

bi c∗f∗gi∗1Wi = c∗f∗φ,

as desired.
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Exercise 2.2.1. Fill up the details to check that (2.2.2) follows from (2.2.1).

Let us go back to our setup, so that f : X → Y is a proper morphism from a
smooth variety X. We assume that Y is embedded in a smooth variety M (the general
case follows by a suitable patching using local embeddings). Then the cycle α is defined
using the following construction. We denote by

Gn := Gn(TX ⊕ TM)

the Grassmann bundle over X: the fiber over a point x ∈ X is given by Gn(TxX⊕TyM),
where y = f(x). For any λ ∈ C, the graph of the vector bundle map

λ df : TX → TM

given by λ times the differential df determines a section

Gn

π

��
X

σλ

DD

of the Grassmann bundle. Let Zλ ⊆ Gn be the image of σλ and βλ := [Zλ] ∈ A∗(Gn)
be the associated cycle. Identify P1 = C ∪ {∞}, let Z be the closure in Gn × P1 of the
image of the map

X × C→ Gn × C ↪→ Gn × P1, (x, λ) 7→ (σλ(x), λ),

and let

Z∞ := pr1(pr−1
2 (∞)) ⊆ Gn,

where pri are the restrictions to Z of the projections of G × P1 onto the two factors.
Then let

β∞ := [Z∞] =
∑

mi[Wi] ∈ A∗(Gn),

where the Wi are the irreducible components of Z∞. By construction, βλ ∼rat β∞ in
A∗(Gn) (and in fact in A∗(Z)) for every λ ∈ C.

Note that π|Zλ : Zλ → X is an isomorphism for every λ ∈ C, but in general we do
not have much control on Z∞. Intuitively, the way Z∞ splits into different components
should reflect the singularities of f .

Exercise 2.2.2. Show that if f : X → M is an immersion then π|Z∞ : Z∞ → X is an
isomorphism.

Let Vi be the image of Wi in Y , and let V̂i → Vi be its Nash blowup. Then let Pi
be the closure in V̂i ×Vi Wi of the of the inverse image of the open set of Vi projecting
isomorphically to Vi. The obtain the following commutative diagram, in which we denote
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the pull-back of a vector bundle by the same symbol as the bundle itself.

T̂i ⊆ TX ⊕ TM ⊇ ξ
$$JJ

TX ⊕ TM ⊇ ξ
zzttt

Pi
µi //

ρi

��

Wi
� � //

ηi

��

Z

π

��

// P1

TX
zzttt

X

f

��

σλ

CC

T̂i
$$JJ

JJ TM
zzttt

V̂i
νi // Vi

� � // Y
� � // M.

Here T̂i is the bundle on V̂i naturally associated with the Nash blowup, and ξ is the

tautological bundle on Gn. Note that rk T̂i = dimVi and rk ξ = n (= dimX). Note also
that dimPi = n.

This construction determines the subvarieties Vi ⊆ Y that we will use to define
α. The integers ni are determined as follows. We observe that the bundle T̂i over Pi
is a subbundle of the bundle ξ over Pi (since T̂i is a vector bundle, it enough to check

the inclusion T̂i ⊆ ξ at the generic point of Pi, and this follows by the construction and

generic smoothness of Vi). Then we take the quotient ξ/T̂i, which is a vector bundle
over Pi of rank n − dimVi. Since this is also the relative dimension of the map ρi, we
immediately deduce that

(2.2.3) ρi∗(c(ξ/T̂i) ∩ [Pi]) = ki[V̂i] in A∗(V̂i)

for some integer ki. Then we define

ni := miki.

Exercise 2.2.3. Explain why ρi∗(c(ξ/T̂i) ∩ [Pi]) does not pick up any higher codimen-

sional cycle on V̂i.

2.3. On the naturality of the transformation. Recall that f : X → Y is a proper
map, and X is smooth. In the previous section, assuming that Y is embedded in a
smooth variety M , we geometrically determined a cycle

α =
∑

miki[Vi] ∈ Z∗(Y )

using the graph construction associated to f . Here we give a partial proof of the identities
stated in (2.2.1).

We start observing that

σ0∗[X] = β0 ∼rat β∞ =
∑

mi[Wi] =
∑

mi µi∗[Pi] in A∗(Z).

12



Note also that σ∗0ξ = TX. Then the first one of the identities in (2.2.1) comes straights
out of the computation

f∗c(X) = f∗ c(TX) ∩ [X]

= f∗ c(σ
∗
0ξ) ∩ [X]

= f∗π∗σ0∗(σ
∗
0c(ξ) ∩ [X])

= f∗π∗ c(ξ) ∩ σ0∗[X]

=
∑

mi f∗π∗ c(ξ) ∩ µi∗[Pi]

=
∑

mi f∗π∗µi∗ c(ξ) ∩ [Pi]

=
∑

mi νi∗ρi∗ c(T̂i) · c(ξ/T̂i) ∩ [Pi]

=
∑

mi νi∗ c(T̂i) ∩ ρi∗(c(ξ/T̂i) ∩ [Pi])

=
∑

miki νi∗ c(T̂i) ∩ [V̂i]

= cMa(α).

The second identity in (2.2.1) is less immediate. For it, we need to prove that

(2.3.1) χ(f−1(p)) =
∑

ni Eup(Vi) for every p ∈ Y .

The full proof of this equation is given in [Mac] using the original transcendental defini-
tion of local Euler obstruction as the obstruction to extend certain local real vector fields.
A different proof of MacPherson theorem was given using the language of Lagrangian
submanifolds, which replace altogether the use of constructible functions [Sab, Ken].
The difficulty to prove directly (2.3.1) using the definition of Euler obstructions given
here is due to the lack of a general intersection theoretic formula computing χ(f−1(p)).

Here we give a intersection theoretic argument to verify (2.3.1) in the special case
when the fiber f−1(p) is smooth, and refer the reader to [Mac] for the general proof.

For every morphism W → Y , we denote by Wp the fiber over p, by W̃ the blowup of W
along Wp, and by EW the corresponding exceptional divisor.

Lemma 2.3.1. Assuming that Xp is smooth, we have

deg c(ξ) ∩ s(Z0,p, Z0) = deg c(ξ) ∩ s(Z∞,p, Z∞).

Proof. For simplicity, let us assume that Xp is connected. Let e = codim(Xp, X). Since
smooth, Xp is locally defined by a regular sequence of length e.

We claim that Zp is locally defined by a regular sequence of length e in Z. We can
replace Y to a sufficiently small neighborhood around p (hence replace X appropriately)
so that for every y ∈ Y the fiber Xy is smooth and has dimension dimXy ≤ dimXp.

We fix an arbitrary q ∈ Xp; then the claim is that the e local equations cutting
Xp near q lift to a regular sequence cutting Zp in Z locally over q. We can assume that
there is a smooth subvariety S ⊆ X of dimension e passing through q and such that

g := f |S : S →M
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is an immersion. Note that S ∩ Xp = {q} and that, since dimS = e, the e equations
defining Xp near q restrict to a regular sequence cutting q on S. We decompose

TqX = TqS ⊕Nq, where Nq := TqXp,

and extend Nq to a vector bundle N over S such that for every x ∈ S and y = f(x) we
have Nx ⊇ TxXy. Let

Ge = Ge(TS ⊕ TM).

For every λ ∈ C, the homomorphism λ dg : TS → TM determines a section τλ : S → Ge;
let Γλ ⊆ Ge be the image of τλ, and let Γ ⊆ Ge×P1 be the closure determined by sending
λ → ∞. Since g is an immersion, every Γλ, for λ ∈ P1, is mapped isomorphically to S,
therefore the the pullback of the e equations defining Xp in X are a regular sequence
cutting Γp in Γ.

For any x ∈ S and y = g(x), we define

ψx : Ge(TxS ⊕ TyM)→ Gn(TxX ⊕ TyM), Λ 7→ Λ + (Nx ⊕ {0}).

This determines an embedding ψ : Ge ↪→ Gn. The condition

Nx ⊇ TxXy = ker df |x,

implies that (df |x)|TxS = dg|x, hence the constructions of σλ and τλ are compatible under
ψ. In other words, we have a commutative diagram

Ge

��

� � ψ // Gn

��
S

τλ

DD

� � // X.

σλ

[[

Therefore Γ = Z ∩ Ge. Still restricting to the local picture over q, both Zp and Γp are
cut, respectively in Z and G, by the pullback of the equations in the regular sequence
cutting Xp in X near q. Since these equations form a regular sequence in Γ, they must
form a regular sequence in Z, as claimed.

Going back to the original setup, we conclude that Zp is flat over P1 and that the
normal cone of Zp in Z is a vector bundle. This implies that

deg c(ξ) ∩ s(Z0,p, Z0) = deg c(ξ) ∩ s(Z∞,p, Z∞)

by [Ful, Example 10.1.10 and Proposition 10.2]. �

Lemma 2.3.2. We have

deg c(ξ) ∩ s(Pi,p, Pi) = ki deg c(T̂i) ∩ s(V̂i,p, V̂i).

Proof. Let di := dimVi, and fix an arbitrary j ≥ 1. Let

ρ̃i : P̃i →
˜̂
Vi

be the induced map. Observing that OPi(EPi) = ρ̃∗iOV̂i(EV̂i) and applying the projection

formula, we compute

ρ̃i∗ cn−di+h(ξ/T̂i) ∩ [EjPi ] =

{
ki[E

j

V̂i
] if h = 0

0 if h ≥ 1,
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Then, using again the projection formula, we obtain

ρi∗ cdi−j(T̂i) · cn−di(ξ/T̂i) ∩ [EjPi ] = ki deg cdi−j(T̂i) ∩ [Ej
V̂i

]

and

cdi−j+h(T̂i) · cn−di−h(ξ/T̂i) ∩ [EjPi ] = 0 for every h ≥ 1.

Note that the second formula implies that

cdi−j(T̂i) · cn−di(ξ/T̂i) ∩ [EjPi ] = cn−j(ξ) ∩ [EjPi ].

Putting all together, we obtain

deg cni−j(ξ) ∩ [EjPi ] = ki deg cdi−j(T̂i) ∩ [Ej
V̂i

]

We conclude by the definition of Segre class. �

We are now ready to verify (2.3.1) when the fiber Xp is smooth. Let NXp/X be the
normal bundle of Xp in X. Then, using the two lemmas just proven and basic properties
of Segre classes [Ful, Section 4.2], we compute

χ(Xp) = deg c(TXp) ∩ [Xp]

= deg c(TX) · c(NXp/X)−1 ∩ [Xp]

= deg c(TX) ∩ s(Xp, X)

= deg c(ξ) ∩ s(Z0,p, Z0)

= deg c(ξ) ∩ s(Z∞,p, Z∞)

=
∑

mi deg c(ξ) ∩ s(Wi,p,Wi)

=
∑

mi deg c(ξ) ∩ s(Pi,p, Pi)

=
∑

miki deg c(T̂i) ∩ s(V̂i,p, V̂i)

=
∑

ni Eup Vi.

Lecture 3. Relative motivic integration and constructible functions

3.1. Motivic integration over a base. Fix a complex algebraic variety X, and let

VarX be the category of X-varieties. Given an X-variety V
g−→ X, we denote by [V

g−→ X],
or simply by [V ] when X and g are clear from the context, the corresponding class modulo
isomorphism over X. Moreover, we set LX := [A1

X ]. Same notation will be used to denote
the elements that these classes induce in the various rings that we are going to introduce.

Let K0(VarX) denote the free Z-module generated by the isomorphism classes of
X-varieties, modulo the relations

[V ] = [V \W ] + [W ]

whenever W is a (closed) subvariety of an X-variety V , and both W and V \W are viewed
as X-varieties under the restriction of the morphism V → X. K0(VarX) becomes a ring
when the product is defined by setting

[V ] · [W ] := [V ×X W ]

and extending it associatively. This ring has zero [∅] and for identity [X].
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Exercise 3.1.1. Check that the product in K0(VarX) is well defined, and that for every

X-variety V
f−→ X one has

[V ] · LX = [V × A1],

where V × A1 is viewed as a X-variety under the composition

V × A1 pr1−−→ V
f−→ X.

Let
MX := K0(VarX)[L−1

X ].

The dimension dimα of an element α ∈ MX is by definition the infimum of the set of
integers d for which α can be written as a finite sum

α =
∑

mi[Vi]L−biX

with mi ∈ Z and dimVi− bi ≤ d (here the dimension of Vi is the one over SpecC). Note
that dim[∅] = −∞. The dimension function satisfies

dim(α+ β) ≤ max{dim(α),dim(β)} and dim(α · β) ≤ dim(α) + dim(β),

so we obtain a structure of filtered ring on MX with the filtration of MX given by
dimension. Completing with respect to the dimensional filtration (for d → −∞), we

obtain the relative motivic ring M̂X . We will use [V ] also to denote the image of V in

M̂X under the natural map MX → M̂X . We will consider the composition of maps

τ = τX : K0(VarX)→MX → M̂X .

All main definitions and properties valid for the motivic integration over SpecC
translate to the relative setting by simply remembering the maps over X. For instance,
consider a smooth X-variety Y . Let Y∞ be the space of arcs of Y , and denote by Cyl(Y∞)
the set of cylinders on Y∞. Then the motivic pre-measure

µX : Cyl(Y∞)→ M̂X

is defined as follows. For any cylinder C ∈ Cyl(Y∞), we choose an integer m such that
π−1
m (πm(C)) = C (here πm : Y∞ → Ym is the truncation map to the space of mth jets).

Then we put

µX(C) := [πm(C)]L−m dimY
X ,

where πm(C) is viewed as a constructible set over X under the composite morphism

Ym → Y → X.

A standard computation shows that the definition does not depend on the choice of m.
For any effective divisor D on Y , we denote by

ord(D) : Y∞ → N ∪ {∞}
order function along D, and set

Contp(D) := {γ ∈ Y∞ | ordγ(D) = p}.
This is a cylinder in Y∞. Then the relative motivic integral is defined by

(3.1.1)

∫
Y∞

L− ord(D)
X dµX :=

∑
p≥0

µX(Contp(D))L−pX .

16



This gives an element in M̂X .
The following change of variables formula is a basic (but extremely useful) property

of motivic integration. A proof for integration over SpecC can be found in [DL1], and
the same proof translates in the relative setting by keeping track of the morphisms to X
and keeping in mind that Y × A1 ∼= Y ×X A1

X for any X-variety Y .

Theorem 3.1.2 ([Kon]). Let g : Y ′ → Y be a proper birational map between smooth
varieties over X, and let KY ′/Y be the relative canonical divisor of g. Let D be an
effective divisor on Y . Then∫

Y∞

L− ord(D)
X dµX =

∫
Y ′∞

L
− ord(KY ′/Y +g∗D)

X dµX .

Thanks to this formula and Hironaka’s resolution of singularities, one can reduce
all computations to the case in which D is a simple normal crossing divisor [KoM, The-
orem 0.2 and Notation 0.4]. Throughout this paper, we will use the following notation:
if Ei, with i ∈ J , are the irreducible components of a simple normal crossing Q-divisor
on a smooth variety Y , then for every subset I ⊆ J we write

E0
I :=

{
E0
I = Y \ E if I = ∅,

(∩i∈IEi) \ (∪j∈J\IEj) otherwise.

Now, consider a simple normal crossing effective divisor D =
∑

i∈J aiEi on a smooth X-
variety Y (here Ei are the irreducible components of D). Then a standard computation
(identical to the analogous one over SpecC) shows that

(3.1.2)

∫
Y∞

L− ord(D)
X dµX =

∑
I⊆J

[E0
I ]∏

i∈I [P
ai
X ]
.

The importance of this formula is not just computational. In fact, it implies that every
integral of the form (3.1.1) is an element in the image of the natural ring homomorphism

ρ : K0(VarX)[[PaX ]−1]a∈N → M̂X .

We let

(3.1.3) NX := Im(ρ) ⊂ M̂X .

All together, we have a commutative diagram

K0(VarX)

��

τ

((QQQQQQQQQQQQQQ
// MX

��
K0(VarX)[[PaX ]−1]a∈N ρ

// M̂X .

Note that the image of τ is contained in NX .
We close this section with the following remark on base change. Given a morphism

h : V → X of complex varieties, we obtain a ring homomorphism

ψh : K0(VarX)→ K0(VarV ), [Y ] 7→ [Y ×X V ],
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where Y is any X-variety (see [Loo, Section 4]). We have ker(τX) ⊆ ker(τV ◦ ψh), hence
a commutative diagram of ring homomorphisms

(3.1.4) K0(VarX)

τX
��

ψh // K0(VarV )

τV
��

M̂X
// M̂V .

If h is an immersion, then for an element α ∈ M̂X we denote its image in M̂V by α|V .

Exercise 3.1.3. Let V be an open subset of a complex variety X. Let D be an effective
divisor on a smooth X-variety Y , and let DV := D ×X V and YV := Y ×X V . Observe
that YV is a smooth V -variety and DV is an effective divisor on YV . Then, using the
commutative diagram

(YV )∞
� � //

σm
��

Y∞

πm

��
(YV )m

� � // Ym,

show that
σm(Contp(DV )) = πm(Contp(D))×X V

for any m, p ∈ N, hence conclude that

(3.1.5)

(∫
Y∞

L− ord(D)
X dµX

) ∣∣∣
V

=

∫
(YV )∞

L− ord(DV )
V dµV .

3.2. From the relative motivic ring to constructible functions. In this section
we present a natural, geometric way to read off constructible functions on a fixed variety
X out of motivic integrals that are computed relative to X.

Fix a complex algebraic variety X, and let F∗(X) be the group of constructible
functions on X, and let F∗(X)Q := F∗(X)⊗Z Q. Note that, if Y and Y ′ are X-varieties
and x ∈ X, then (Y ×X Y ′)x = Yx × Y ′x. By the multiplicativity property of the Euler
characteristic (see Section 1.3), we have

χc((Y ×X Y ′)x) = χc(Yx)χc(Y
′
x).

Therefore we obtain a ring homomorphism

Φ0 : K0(VarX)→ F∗(X), [V
g−→ X] 7→ g∗1V .

Exercise 3.2.1. Use the additivity property of χc (see Section 1.3) to verify that Φ0 is
well-defined.

Proposition 3.2.2. There is a unique ring homomorphism Φ : NX → F∗(X)Q making

K0(VarX)

τ

��

Φ0 // F∗(X)� _

��
NX

Φ // F∗(X)Q

a commutative diagram of ring homomorphisms.
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Proof. Since Φ0([PaX ]) = (a + 1)1X is an invertible element in F∗(X)Q, Φ0 extends,
uniquely, to a ring homomorphism

Φ̃ : K0(VarX)[[PaX ]−1]a∈N → F∗(X)Q.

We claim that

(3.2.1) ker(ρ) ⊆ ker(Φ̃).

Let us grant this for now. We conclude that Φ̃ induces, and is uniquely determined by,
a ring homomorphism Φ : NX → F∗(X)Q. The commutativity of the diagram in the
statement is clear by the construction.

It remains to prove (3.2.1). By clearing denominators it is sufficient to show
that, if α is in the kernel of τ , then Φ0(α) = 0. When X = SpecC, this is proven
in [DL1, (6.1)] using the degree of the Hodge-Deligne polynomial to control dimensions.
In general, consider an arbitrary point x ∈ X (we also denote by x : SpecC → X the
corresponding morphism). By change of base, we obtain the commutative diagram (3.1.4)
with V = {x}. Since τ(α) = 0, this gives τ{x}(ψx(α)) = 0, hence χc(ψx(α)) = 0 by [DL1].
This means that Φ0(α)(x) = 0. Varying x in X, we conclude that Φ0(α) = 0. �

Given an effective divisor D on a smooth X-variety Y , we define

ΦX
(Y,−D) := Φ

(∫
Y∞

L− ord(D)
X dµX

)
∈ F∗(X)Q.

We will use the abbreviated notation Φ(Y,−D) to denote this function anytime X is clear

from the context. Moreover, if D = 0, then we write ΦX
Y , or just ΦY .

Exercise 3.2.3. Does Φ “commute” with the integral? In other words, what happens if
one applies the obvious extension of Φ0, term by term, in the series defining the motivic
integral before computing the sum that expresses it as an element in NX?

We get at once the following properties:

Proposition 3.2.4. Consider two smooth X-varieties Y
f−→ X and Y ′

f ′−→ X, and
assume that there is a proper birational morphism g : Y ′ → Y over X. Let D be an
effective divisor on Y . Then

Φ(Y,−D) = Φ(Y ′,−(KY ′/Y +g∗D))

in F∗(X)Q, where KY ′/Y is the relative canonical divisor of g.

Proof. Apply Φ to both sides of the formula in Theorem 3.1.2. �

Proposition 3.2.5. If D =
∑

i∈J aiEi is a simple normal crossing divisor on a smooth

X-variety Y
f−→ X, then

(3.2.2) Φ(Y,−D) =
∑
I⊆J

f∗1E0
I∏

i∈I(ai + 1)

in F∗(X)Q. In particular, if D = 0, then ΦY = f∗1Y .

Proof. Apply Φ to both sides of (3.1.2). �
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Exercise 3.2.6. Using Proposition 3.2.5, verify explicitly the identity stated in Propo-
sition 3.2.4 when X = Y = A2, Y ′ is the blowup of A2 at the origin, and D = aL, where
L ⊂ A2 is a line through the origin and a ∈ N.

Exercise 3.2.7. Let D an effective divisor on a smooth X-variety, and let V be an open
subset of X. Letting YV = Y ×X V and DV = D|YV , prove that

(3.2.3) ΦV
(YV ,−DV ) = ΦX

(Y,−D)

∣∣
V
.

3.3. Constructible functions arising from klt pairs. In the following we will use
some terminology coming from the theory of singularities of pairs; standard references
are [Kol, KoM]. As in the previous sections, we fix a complex variety X. The goal of this
section is to generalize the construction introduced in the previous section and define
a way to associate a constructible function on X to any Kawamata log-terminal pair
(Y,∆), namely, a pair consisting of a normal X-variety Y and a Q-Weil divisor ∆ on it
such that KY + ∆ is Q-Cartier and the pair has Kawamata log-terminal singularities.

We start considering the case in which Y smooth and ∆ is a simple normal crossing
Q-divisor on Y . Write

D := −∆ =
∑
i∈J

aiEi,

where Ei are the irreducible components of ∆ and ai ∈ Q. Fix a positive integer r such

that rai ∈ Z for every i, and define the ring M̂
1/r
X to be the completion of

K0(VarX)[L±1/r
X ]

with respect to a similar dimensional filtration as the one used in the case r = 1. Here

L1/r
X is a formal variable with (L1/r

X )r = LX , and we assign to it dimension 1
r + dimX.

Then define

(3.3.1)

∫
Y∞

L− ord(D)
X dµX :=

∑
p

µX(Contp(rD)) · (L1/r
X )−p.

One can think that one is integrating (L1/r
X )− ord(rD) instead of L− ord(D)

X . Since
Contp(rD) is non-empty only for integral values of p, the summation appearing in the
right hand side of (3.3.1) is taken over Z. In fact, an explicit (and rather standard) com-
putation shows that the summation is taken over N (this is not clear a priori because D
needs not be effective), and moreover gives us the following formula for the integral:

(3.3.2)

∫
Y∞

L− ord(D)
X dµX =

∑
I⊆J

[E0
I ]
∏
i∈I

∑r−1
t=0 (L1/r

X )t∑r(ai+1)−1
t=0 (L1/r

X )t
.

Exercise 3.3.1. The assumption that (X,∆) is Kawamata log-terminal is equivalent,
in this case, to the expression in the right side of (3.3.2) makes sense. Why?

Exercise 3.3.2. Suppose that X = A1 and E = {0} ⊂ X, and let D = aE for an
arbitrary rational number a > −1. Then verify in this case that the series appearing
in (3.3.1) indeed runs over N, and that it converges to the corresponding expression
determined by (3.3.2).
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The expression (3.3.2) is an element in the image of the ring homomorphism

K0(VarX)

(rd−1∑
t=0

(L1/r
X )t

)−1

d∈ 1

r
N∗

−→ M̂
1/r
X .

Let N
1/r
X be the image of this homomorphism. The ring homomorphism Φ0 :

K0(VarX)→ F∗(X), defined in the previous section, extends to a ring homomorphism

Φ0 : K0(VarX)[L1/r
X ]→ F∗(X)

by setting Φ0(L1/r
X ) = 1X . Observing that

Φ0(

b∑
t=0

(L1/r
X )t) = (b+ 1)1X ,

we conclude (as in the proof of Proposition 3.2.2) that Φ0 induces a ring homomorphism

Φ : N
1/r
X → F∗(X)Q.

Note that, for every rational number a > −1 and any choice of r such that ra ∈ Z,

Φ

( ∑r−1
t=0 (L1/r

X )t∑r(a+1)−1
t=0 (L1/r

X )t

)
=

r

r(a+ 1)
1X =

1X
a+ 1

,

which, in particular, does not depend on the choice of r. Therefore, we can define

ΦX
(Y,∆) := Φ

(∫
Y∞

L− ord(D)
X dµX

)
∈ F∗(X)Q.

By (3.3.2) and the above discussion, this function does not depend on the choice of the
integer r needed to compute it.

Remark 3.3.3. Using (3.3.2), we can extend the formula stated in (3.2.2) to this setting,
namely allowing ai to be rational numbers larger than −1.

Bearing in mind [KoM, Lemma 2.30], Proposition 3.2.4 also extends to this setting,
giving us the following property.

Proposition 3.3.4. Consider a Kawamata log-terminal pair (Y,∆), with Y a smooth
X-variety and ∆ a simple normal crossing divisor. Let g : Y ′ → Y be a proper birational
morphism such that Y ′ is smooth and ∆′ := −KY ′/Y + g∗∆ is a simple normal crossing
divisor. Then (Y ′,∆′)) is a Kawamata log-terminal pair, and

ΦX
(Y,∆) = ΦX

(Y ′,∆′).

We are now ready to consider the general setting: we start with a Kawamata log-
terminal pair (Y,∆) over X, namely, a pair consisting of a normal X-variety Y and a
Q-Weil divisor ∆ on Y such that KY +∆ is Q-Cartier and the pair (Y,∆) has Kawamata
log-terminal singularities [KoM, Definition 2.34]. We can find a resolution of singularities

g : Y ′ → Y

such that, if Ex(g) is the exceptional locus of g and ∆′ ⊂ Y ′ is the proper transform of
∆, then Ex(g)∪∆′ is a simple normal crossing divisor on Y ′ (such a resolution is called
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a log-resolution of the pair (Y,∆)). Fix an integer m such that m(KY + ∆) is Cartier.
Then there exists a unique Q-divisor Γ on Y ′ such that

OY (mΓ) ∼= OY (−mKY ′ + g∗(m(KY + ∆))) and Supp(Γ + ∆′) ⊆ Ex(g);

furthermore, Γ does not depend on the choices of KY and m [KoM, Section 2.3]. Note
that Γ is a simple normal crossing Q-divisor by our assumption on the resolution, and
that the pair (Y ′,Γ) is Kawamata log-terminal [KoM, Lemma 2.30]). Thus we can define

ΦX
(Y,∆) := ΦX

(Y ′,Γ) ∈ F∗(X)Q.

By Proposition 3.3.4, this definition is independent of the choice of resolution. Similar
abbreviations of the notation as in the previous section will be used.

Exercise 3.3.5. Let X = A2, let C = {y2 = x3} ⊂ X, and let ∆ = 1
2C. Then compute

ΦX
(X,∆).

Lecture 4. Stringy Chern classes and their properties

4.1. Invariance of Chern classes of K-equivalent manifolds. It has been dis-
covered more and more evidence that, among birational manifolds, those that are K-
equivalent share many common properties and features. We recall that two manifolds
X and X ′ are said to be K-equivalent if there exists a smooth variety Y and proper,
birational morphisms f : Y → X and f ′ : Y → X ′ such that KY/X is linearly equivalent
to KY/X′ [Kaw].

Examples of K-equivalent manifolds are:

(a) Two manifolds related by a flop:

X

h ��?
??

??
flop //_____ X+

h+����
��

�

Z.

(b) Two crepant resolutions of a normal, Gorenstein variety W :

KX/W = 0 X

g ��?
??

??
X ′

g′����
��

�
KX′/W = 0

W.

(c) Two birationally equivalent Calabi-Yau manifolds:

OX(KY/X) ∼= ωY Y
f

����
��

� f ′

��?
??

??
OX(KY/X′) ∼= ωY

X
bir //_____ X ′.

In the last example we have carefully avoided the use of the symbol KY , as this is
only defined as a divisor class, whereas it is important to regard the relative canonical
divisors as divisors.

Exercise 4.1.1. Let X and X ′ be K-equivalent manifolds. Show that the condition on
the relative canonical divisors is satisfied for every choice of Y , f and f ′.

Chern classes of K-equivalent manifolds are related as follows.

22



Theorem 4.1.2 ([Alu1]). Let X and X ′ be smooth K-equivalent varieties. Let Y be a
smooth variety with proper birational morphisms f : Y → X and f ′ : Y → X ′. Then
there is a class α ∈ A∗(Y )Q such that f∗α equal the image of c(X) in A∗(X)Q and f ′∗α
equals the image of c(X ′) in A∗(X

′)Q.

The notion of K-equivalence can be extended to a large class of singular varieties,
namely, to normal Q-Gorenstein varieties. We recall that a normal variety X is said to
be Q-Gorenstein if some multiple mKX of the canonical divisor KX (which is always
well-defined as a Weil divisor on X) is Cartier. We will give a general definition of K-
equivalence for this class of varieties in Section 4.3, and prove the above result in a more
general setting (see Theorem 4.3.2 below). Under some assumptions on the morphisms
f and f ′, we will also give an explicit formula for the class α pushing forward to the two
Chern classes in terms of the discrepancies of the exceptional divisors.

A generalization of Theorem 4.1.2 to singular varieties presupposes a notion of
Chern class for such varieties. It turns out that the generalizations of Chern classes
discussed in the previous lectures do not behave well under K-equivalence. This is the
motivation for what comes next.

Exercise 4.1.3. Give an example of a normal, Gorenstein variety X admitting a crepant
resolution f : Y → X, such that f∗cSM (Y ) 6= cSM (X) in A∗(X) as well as in A∗(X)Q.
Conclude that the Schwartz-MacPherson class cannot enjoy a similar property as the
one that Chern classes of smooth varieties are stated to enjoy in Theorem 4.1.2.

4.2. Definition and basic properties of stringy Chern classes. We use the results
of the previous lectures to define an alternative generalization of total Chern class of a
singular variety, more in the spirit of the newly introduced “stringy” invariants arising
from motivic integration.

Let X be a normal variety, and assume that the canonical class KX (which, we
recall, is defined as a Weil divisor) is Q-Cartier, namely, a positive multiple mKX of it
is Cartier. Consider a resolution of singularities f : Y → X whose exceptional locus is a
divisor in simple normal crossing. In this setting, the relative canonical divisor KY/X of
f is defined as the unique f -exceptional Q-divisor of Y such that mKY/X is Cartier and

OY (mKY/X) ∼= OY (mKY )⊗ f∗OX(−mKX)

(see Section 3.3). Then we say that X has at most canonical (resp. log-terminal) singu-
larities if the divisor KY/X (resp. the divisor dKY/Xe) is effective. Standard arguments
show that this definition is idependent of the choice of the resolution f . For short, we
will say that X is a canonical (resp. log-terminal) variety to mean all the above.

Associated to an arbitrary log terminal variety X, we obtain the function

ΦX := ΦX
(X,0) = ΦX

(Y,−KY/X) ∈ F∗(X)Q.

Then the stringy Chern class of X is the class

cst(X) := c∗ΦX ∈ A∗(X)Q,

where A∗(X)Q := A∗(X)⊗ZQ. If ΦX is a integral-valued function, then the class cst(X)
can actually be defined in A∗(X).

Exercise 4.2.1. Show that there is always an integer m (depending on X) such that

ΦX ∈ F∗(X)⊗Z
1
mZ,
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and conclude that the stringy Chern class can be defined in A∗(X)⊗Z
1
mZ.

Proposition 4.2.2. If X admits a crepant resolution f : Y → X, then cst(X) = f∗c(Y )
in A∗(X). In particular, if X is smooth, then cst(X) = c(X) in A∗(X).

Proof. Since KY/X = 0, f is proper, and Y is smooth, we have

cst(X) = c∗ΦX = c∗Φ
X
Y = c∗f∗1Y = f∗c∗1Y = f∗c(Y ).

�

Exercise 4.2.3. Fix k ≥ 1. Let X ⊂ P3 be the surface defined by the equation x0x1x2 =
xk3, and let f : Y → X be its minimal resolution of singularities. Recall that the
exceptional locus of f , which is given by the fiber over the point p = (1, 0, 0, 0) ∈ X,
consists of a chain of k − 1 rational curves. Compute f∗1Y , and then use MacPherson
theorem to determine cSM (X) in terms of f∗c(Y ). Then compute ΦX , hence determine
the difference between cSM (X) and cst(X).

The previous exercise can be generalized as follows.

Exercise 4.2.4. Let X be a projective surface with a DuVal singularity at a point p ∈ X
and smooth elsewhere. Then, for each type of singularity (Ak, Dk, Ek), determine the
difference cSM (X)− cst(X) in A∗(X).

Let X be a log-terminal variety, and let f : Y → X be a resolution of singularities
such that KY/X =

∑
i kiEi is a simple normal crossing Q-divisor. The stringy Euler

number of X is by definition

χst(X) :=
∑
I⊆J

χc(E
0
I )∏

i∈I(ki + 1)
.

(see [Bat2]). If X is proper, then we have

(4.2.1)

∫
X
cst(X) = χst(X).

Exercise 4.2.5. Keeping in mind that it is only allowed to take degrees of cycles on
proper varieties, prove (4.2.1).

It is possible to carry out a general theory of stringy Chern classes for pairs by
defining

cst(X,∆) := c∗Φ(X,∆) ∈ A∗(X)Q

for any Kawamata log-terminal pair (X,∆).

Exercise 4.2.6. Assume that Y is a smooth variety, and let −∆ =
∑

i∈J aiEi be a
simple normal crossing divisor on Y with rational coefficients ai > −1. For each i, let
ei := c1(OY (Ei)). Using the adjunction formula [Ful, Example 3.2.12], show that

(4.2.2) cst(Y,∆) =

(∏
i∈J

1 + 1
ai+1ei

1 + ei

)
∩ c(X)

in A∗(Y )Q.
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Remark 4.2.7. The expression in the right side of (4.2.2) can also be obtained from
the orbifold elliptic class, defined in [BL2, Definition 3.2], by taking the coefficients of
a certain Laurent expansion in one of the two variables after a limiting process in the
other variable. in particular, if X is a log-terminal variety and Y → X is a resolution
of singularities with exceptional locus equal to a simple normal crossing divisor, then
one sees by the previous observation (applied with ∆ = −KY/X) that the stringy Chern
class of X can be reconstructed from its orbifold elliptic class.

4.3. Invariance of stringy Chern classes of K-equivalent varieties. Kawamata’s
definition of K-equivalence [Kaw, Definition 1.1] naturally extends to the class of normal
varieties with Q-Cartier canonical class, as follows. Two normal varietiesX andX ′ whose
canonical classes are Q-Cartier are said to be K-equivalent if there exists a smooth variety
Y and proper and birational morphisms f : Y → X and f ′ : Y → X ′ such that

KY/X = KY/X′

as divisors on Y . As in the smooth case, the definition does not depend on the choice of
Y , f and f ′.

It is a nice application of the negativity lemma to verify that, if the singularities are
mild, then it suffices to require that the relative canonical classes be Q-linearly equivalent
(or even just numerically equivalent) in the definition of K-equivalence. This shows, in
particular, that the definition of K-equivalence given here coincides with the one given
in the previous section when we restrict it to manifolds.

Lemma 4.3.1. Two canonical varieties X and X ′ are K-equivalent if and only if, for
any common resolution Y as above, we have

KY/X ≡ KY/X′ .

Proof. We first recall the Negative Lemma [KoM, Lemma 3.39], with states that if g :
V → Z is a proper birational morphism between normal varieties and −B is a g-nef
Q-divisor on Y such that g∗B is effective, then B is effective.

One direction is obvious, so we can assume that KY/X ≡ KY/X′ . Let B = KY/X′−
KY/X . Since B ≡ 0, we certainly have that −B is f -nef. On the other hand

f∗B = f∗(KY/X′ −KY/X) = f∗KY/X′ ,

since KY/X is f -exceptional. But X is canoical, hence f∗KY/X′ is effective, and therefore
B is effective by the negativity lemma. Repeating the argument with −B in place of
B, and projecting down to X ′, yields the effectiveness of −B. Therefore B = 0, as
claimed. �

The following result extends Theorem 4.1.2.

Theorem 4.3.2 ([Alu2, dFLNU1]). Let X and X ′ be K-equivalent log-terminal varieties,
and consider a diagram

Y
f

����
��

� f ′

��?
??

??

X X ′,

with Y a smooth variety and f and f ′ proper and birational morphisms. Then:
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(a) There is a class α ∈ A∗(Y )Q such that f∗α = cst(X) in A∗(X)Q and f ′∗α = cst(X
′)

in A∗(X
′)Q.

(b) If

KY/X = KY/X′ =
∑
i∈J

kiEi

is a simple normal crossing divisor (here the Ei are the irreducible components),
then α is the class

α = c∗
∑
I⊆J

1E0
I∏

i∈I(ki + 1)
.

Proof. By definition of K-equivalence, we have KY/X = KY/X′ as Q-divisors. Let K
denote this divisor. It is enough to prove the theorem assuming that K has simple
normal crossings. Indeed, by further blowing up Y , we can always reduce to this case,
and push-forward on Chow rings is functorial for proper morphisms. Then, defining α
as in part (b) of the statement, we have

f∗α = c∗
∑
I⊆J

f∗1E0
I∏

i∈I(ki + 1)
= c∗Φ

X
(Y,−K) = c∗ΦX = cst(X),

where we have applied the functoriality of c with respect to proper morphisms for the
first equality, used (3.2.2) for the second one, and applied Proposition 3.2.4 for the third.
Similarly, f ′∗α = cst(X

′). �

Exercise 4.3.3. Give an explicit example to show that MacPherson class does not enjoy
this invariance property under K-equivalence.

Lecture 5. McKay correspondence for stringy Chern classes of quotient
varieties

5.1. The classical McKay correspondence and the Euler orbifold number.
A striking correspondence between the representation theory of finite subgroups G of
SL2(C) and the geometry of the minimal resolution of singularities of their quotients
C2/G was observed by McKay. We will discuss here in some details the simplest case,
namely when G ∼= Z/kZ, acting on C2 by

α : (u, v) 7→ (ζu, ζ−1v).

Here α is a generator of G, and ζ is a primitive k-th root of unity.
By observing that the subring of invariant polynomials in C[u, v] is generated by

uk, vk and uv, we can realize the quotient X as a subvariety of C3 defined by

xy = zk.

The minimal resolution of singularities f : Y → X is a crepant resolution (that is,
KY/X = 0), and the exceptional locus of f (the fiber over the origin) is a chain of k − 1
rational curves. The incidence graph of this fiber is Ak−1.

What is interesting to observe at this point is that G has k − 1 two-dimensional
irreducible representations given by

Vi ∼= C2, with action α 7→
(
ζi 0
0 ζ−i

)
for i = 1, . . . , k − 1.
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The first one, namely V1, corresponds to the inclusion G ⊂ SL2(C). We include to this
list the two-dimensional trivial representation V0 of G. It is easy to check that

V1 ⊗ Vi = Vi−1 ⊕ Vi+1 for every 0 < i < k.

In particular each Vi is a direct summand of V1 ⊗ Vi−1 and V1 ⊗ Vi+1. The McKay
graph of the representation V1 of G is defined by having an vertex for each irreducible
representation Vi of G, including V0, and putting an edges Vi Vj whenever Vi is a
direct summand of V1 ⊗ Vj or Vj is a direct summand of V1 ⊗ Vi. This graph is the

extended Dynkin diagram Ãk−1; if we remove the trivial representation, then we obtain
the incidence graph of the exceptional fiber of f .

Exercise 5.1.1. Check that V1 ⊗ Vi = Vi−1 ⊕ Vi+1 by writing down the corresponding
action of G on a basis {ei ⊗ e′j} of C2 ⊗ C2.

As mentioned, analogous correspondence occurs between the irreducible represen-
tations of the other finite groups of SL2(C) and the minimal resolutions of the correspond-
ing DuVal singularities of the quotients. This is known as the McKay correspondence.

This correspondence has also an interpretation in terms of Euler numbers. Coming
back to our example, let

E = E1 ∪ · · · ∪ Ek−1

be the exceptional divisor of f (we assume that the Ei are numbered progressively along
the chain). Then we compute

χc(Y ) =
k−1∑
i=1

χc(Ei)−
k−2∑
i=1

χc(Ei ∩ Ei+1) = k.

On the other hand, if we add the Euler characteristics of the quotients of the fixed point
sets (C2)g ⊆ C, as g runs in G, we obtain∑

g∈G
χc((C2)g/G) = χc(X) + (k − 1)χc({0}) = k.

It is not a coincidence that the two numbers are the same.
In order to generalize this correspondence, we need to modify the second compu-

tation when G is not abelian. In general, given a finite group G acting on a manifold
M , we add the Euler characteristics of the quotients Mg/C(g), where Mg ⊆ M is the
fixed locus of g, C(g) ⊆ G is the centralizer of g, and g runs in a set of representatives
C(G) of the conjugacy classes of G. This sum is what defines the orbifold Euler number
of the pair (M,G):

(5.1.1) χorb(M,G) :=
∑

g∈C(G)

χc(M
g/C(g)),

Exercise 5.1.2. Check that C(g) does act on Mg, and that χorb(M,G) does not depend
on the choice of the representative g of each conjugacy class (g).

The orbifold Euler number defined in (5.1.1) was for the first time introduced
by physicists Dixon, Harvey, Vafa, and Witten [DHVW]. In their original formulation,
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motivated by considerations in string theory, this invariant was defined for projective
manifolds by

(5.1.2) χorb(M,G) :=
1

|G|
∑
gh=hg

χ(Mg,h),

where the sum runs through all the (unordered) pairs of commuting elements g, h of G
and Mg,h is the set of points in M that are fixed both by g and by h. The formulation
given in (5.1.1) was then deduced by Hirzebruch and Höfer [HH].

Exercise 5.1.3. For any finite group H acting on a projective manifold N , we have

χ(N/H) =
1

|H|
∑
h∈H

χ(Nh).

Using this formula, show that (5.1.1) follows from (5.1.2).

5.2. The motivic McKay correspondence. Let us illustrate another interesting cor-
respondence, observed by Ito and Reid [?], in the special case when

G =
{
e =

(
1 0
0 1

)
, g1 =

(
ζ 0
0 ζ2

)
, g2 =

(
ζ2 0
0 ζ

)}
⊂ GL2(C),

where ζ is a fixed primitive 3-rd root of unity. Let X = C2/G and let f : Y →
X be the minimal resolution. The correspondence here is between between the two
nontrivial elements g1, g2 of G (which, as we will see below, are “junior”) and the two
exceptional divisors E1 and E2 (which, as we know, are crepant). We can interpret this
correspondence by considering the fiber over zero of π : X∞ → X. Note that X is defined
by xy = z3 in A3. The components of an arc

γ(t) = (x(t), y(t), z(t)) = (a1t+ a2t
2 + . . . , b1t+ b2t

2 + . . . , c1t+ c2t
2 + . . . ) ∈ π−1(0),

must satisfy the relation
x(t)y(t) = z(t)2.

Thus there are two components π−1(0) = C1 ∪ C2 given by C1 = {γ | b1 = 0} and
C1 = {γ | a1 = 0}. Let pick the following arcs:

γ1 = (t, t2, t) ∈ C1 and γ2 = (t2, t, t) ∈ C2.

By taking the square root s = t1/2 of the parameter, we can lift these arcs to C2:

SpecC[[s]]

t=s2

��

γ̃i // C2

(x,y,z)=(u2,v2,uv)

��
SpecC[[t]]

γi // X.

Note that γ̃1(s) = (s, s2) and γ̃2(s) = (s2, s), hence

γ̃1(ζs) = (ζs, ζ2s2) = g1 · γ̃1(s) and γ̃2(ζs) = (ζ2s2, ζs) = g2 · γ̃2(s).

In this way, each γi determines a gi. In we let γi varying generically in Ci, the correspon-
dence does not change. On the other hand, in this example the Nash correspondence
that associates to each prime exceptional divisor Ei of f an irreducible component Ci is
surjective. We conclude that for to each Ei there is a corresponding gi, and conversely.
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In more general setup, by studying the arc space of the quotient and stratifying this
according to the conjugacy classes of the elements in the groups determined by the lifting
of the arcs, Batyrev [Bat2] and Denef and Loeser [DL2] were able to compute the motivic
integral determined by the relative canonical divisor of a resolution of singularities in
terms of the measures of these strata and the corresponding numerical data associated
to the action of the corresponding elements in the group. The formula they obtained is
described next.

To fix notation, let M be a smooth quasi-projective complex variety of dimension
n, and let G be a finite group with an action on M . Let X = M/G, with projection
p : M → X. We assume that there is a global non-vanishing G-invariant section of ωM .
This implies that X is a normal variety, KX is Cartier, and p∗OX(KX) = ωM (e.g., see
[DK, Proposition 2.3.11] and [Rei, Subsection 1.3]).

We stratify X according to the stabilizers of the points on M . For any subgroup
H of G, let MH ⊆ M denote the locus of points with stabilizer equal to H, and let
XH = p(MH) (note that MH may be different by the locus of M fixed by H).

Exercise 5.2.1. Show that the stabilizers of any two points y, y′ ∈ M lying over the
same point in X are conjugated in G.

If we let H run in a set S(G) of representatives of conjugacy classes of subgroups
of G, we obtain a stratification of X:

X =
⊔

H∈S(G)

XH ,

For simplicity, we will assume that each XH is connected.
Let r = |G|, and fix a primitive r-th root of unity ζ. For each y ∈ MH and

h ∈ H, the action of h on TyM can be diagonalized as h|TyM = diag(ζa1 , . . . , ζan), with
0 ≤ ai < n. Then we define the age of h at y to be the number

age(h) := 1
r (a1, . . . , an)

(a junior element is an element of age 1). As long as we assume that XH is connected,
the age of h is the same at each point h ∈ H.

Consider now a resolution of singularities f : Y → X. The have the following
diagram:

M G
ss

p

��
Y

f // X.

To write the following formula, one needs a further quotient of the motivic ring. For
every x ∈ X, every Ckx := (Ck → {x} ↪→ X), and every finite group L acting linearly

on Ckx, we identify [Ckx/L] with [Ckx]. We will denote by M̂X/ the resulting ring and by
NX/ the image of NX in there. Note that Φ factors through this quotient, defining a
ring homomorphism Φ : NX/ → F∗(X)Q.
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Theorem 5.2.2 ([Bat2, DL2], see also [Rei, Loo, Yas2]). For every resolution of singu-
larities f : Y → X, we have

(5.2.1)

∫
Y∞

L− ord(KY/X)

X dµX =
∑

H∈S(G)

[XH ]
∑

h∈C(H)

Lage(h)
X in M̂X/,

where C(H) is a set of representatives of conjugacy classes in H.

The proof of this theorem goes beyond the purpose of these notes. Already a
technical difficulty is that the arc spaces of Y and M are compared over X, and we
have so far carefully avoided to perform motivic integration over arc spaces of singular
varieties. In the proof, the formula in (5.2.1) breaks into two parts. The first part
consists of computing the left hand side as an integral over X∞. Since X is singular,
the change of variable formula for motivic integration needs to be corrected (even when
KX is Cartier). This is done by twisting the motivic measure over X∞ by the order of
vanishing of the ideal J ⊆ OX determined by the natural homomorphism

(∧nΩ1
X)/ torsion→ ωX .

Another difficulty of working with singular varieties is that the projections Xm+1 → Xm

are not locally trivial affine bundles anymore (they may not even be surjective), so one
needs to proceed cautiously with the definition of motivic measure. In any case, once
things are suitably fixed, the change of variable formula gives∫

X∞

Lord(J)
X dµX =

∫
Y∞

L− ord(KY/X)

X dµX in M̂X .

The core of the proof is then to show that∫
X∞

Lord(J)
X dµX =

∑
H∈S(G)

[XH ]
∑

h∈C(H)

Lage(h)
X in M̂X/.

The ages appear by stratifying

π−1(XH) =
⊔

h∈C(H)

XH,h
∞

and computing the contribution that each of this piece brings to the integral. We refer
to [DL2] for details.

5.3. Stringy Chern classes of quotient varieties. Consider the notation as in the
previous section, so that M is a smooth quasi-projective complex variety of dimension
d, G is a finite group with an action on M such that there is a global non-vanishing
G-invariant section of ωM , and X = M/G, with projection p : M → X.

Recall that we have fixed a set of representatives S(G) of subgroups of G. For
every g ∈ C(G), consider the fixed-point set Mg ⊆M . There is a commutative diagram

Mg

��

� � // M

p

��
Mg/C(g)

pg // X,

where pg is a proper morphism.
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Warning 5.3.1. Given a finite group H acting on a X-variety V , we will denote by
[V/H] the element in the Grothendieck ring K0(VarX) (or the element that this induces

in M̂X) determined by the quotient variety V/H. We warn the reader that same notation
is commonly used in literature to denote the Deligne-Mumford stack associated to the
action of H on V .

Exercise 5.3.2. Check that [Mg/C(g)], as an element in K0(VarX), is independent of
the representative g chosen for its conjugacy class in G.

Theorem 5.3.3 ([dFLNU1]). With the notation as in the beginning of this section, we
have

(5.3.1) ΦX =
∑

g∈C(G)

pg∗1Mg/C(g) in F∗(X).

Sketch of the proof. We introduce the following notation. For each subgroup H of G we
fix a set C(H) of representatives of conjugacy classes of elements of H. For each element
g ∈ G and each subgroup L ⊆ G containing g, we denote by CL(g) the centralizer of g
in L (if L = G, then we just write C(g)) and by NL(g) the normalizer of g in L.

Applying Φ to both sides of (5.2.1), we obtain

(5.3.2) ΦX =
∑

H∈S(G)

|C(H)| · 1XH in F∗(X).

In order to show that the right hand side of (5.3.2) is equal to that of (5.3.1), we start
by observing that∑

g∈C(G)

[Mg/C(g)] =
∑

H∈S(G)

 ∑
h∈C(NH)∩H

[MH/CNH (h)]

 in M̂X .

This identity follows from certain formal identities in the Grothendieck ring of Deligne-
Mumford stacks over X, and a natural homomorphism from this ring to K0(VarX). For
this step, we address the interested reader to [dFLNU1, Section 5], warning him of the
different notation adopted there to denote the elements in the Grothendieck ring.

Then the proof boils down to show that, for every H ∈ S(G) and h ∈ H, there is
an étale morphism

νH,h : MH/CNH (h)→ XH

commuting with the other various quotient maps, and that∑
h∈C(NH)∩H

deg νH,h = |C(H)|.

The details of this computation are contained in [dFLNU1, Section 6]. �

Exercise 5.3.4. Note that for every open subset V ⊆ X, the restriction of f to YV :=
f−1(V ) is a resolution of singularities of V , and that KY/X |YV = KYV /V . Then show
that Theorem 5.3.3 can be extended to the situation in which we only assume that
KX is Cartier and p∗OX(KX) = ωM , rather than requiring that ωM admits a nowhere
vanishing G-invariant section.

We can deduce from Theorem 5.3.3 formulas computing the stringy Euler number
and the stringy Chern classes of quotient varieties.
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Theorem 5.3.5 ([Bat2]). With the notation as in the beginning of this section, we have

χst(X) = χorb(M,G).

In particular, the orbifold Euler characteristic of (M,G) is equal to the ordinary Euler
characteristic of the resolution of M/G, if the latter is crepant.

Proof. Apply g∗ : F∗(X)→ F∗(pt) ∼= Z to both sides of (5.3.1). �

Theorem 5.3.6 ([dFLNU1]). With the notation as in the beginning of this section, we
have

cst(X) =
∑

g∈C(G)

pg∗cSM (Mg/C(g))

in A∗(X).

Proof. Applying c : F∗(X) → A∗(X) to the first and last members of the formula in
Theorem 5.3.3, we obtain

cst(X) =
∑

g∈C(G)

c∗pg∗1Mg/C(g).

Hence the statement follows by recalling that c∗ commutes with pg∗. �

Remark 5.3.7. We remark that in general the quotients Mg/C(g) may have several
irreducible components, but the construction of MacPherson extends to this case, hence
there is no problem in defining the Chern-Schwartz-MacPherson class of Mg/C(g).

Exercise 5.3.8. Verify the formula in Theorem 5.3.6 for each finite subgroup of SL2(C),
using the computation of cst(X)− cSM (X) done in Exercise 4.2.4.
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