Problem # 1
Let $Z = \mathbb{Z}^+$ and $\mathbb{R} = \mathbb{R}^+$ be the additive groups, and let S^1 denote the circle group. Let $\phi: \mathbb{R} \to \mathbb{C}^\times$ be the homomorphism defined by $\phi(t) = e^{2\pi it}$.

(a) Apply the First Isomorphism Theorem to prove that the quotient group \mathbb{R}/\mathbb{Z} is isomorphic to S^1.

(b) Give a reason why \mathbb{R} is not isomorphic to the product $\mathbb{Z} \times S^1$.

Problem # 2
Prove Fermat’s Little Theorem: For any prime p and any integer a,

$$a^p \equiv a \mod p.$$

Problem # 3
Let $V = P_{\leq 3}(F)$ be the vector space of polynomials $p(x)$ of degree ≤ 3 with coefficients in a field F.

(a) What is the dimension of V? Explain.

(b) Let $D: V \to V$ denote derivation. That is, D is the linear operator defined by $D(p(x)) = p'(x)$ for all $p(x) \in V$. Prove that D is not diagonalizable. [Hint: What are the eigenvectors of D?]

Problem # 4
(a) Mark the Jordan blocks in the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by the above matrix A. Describe all proper T-invariant subspaces of \mathbb{R}^3.