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Introduction

This is a talk about sequences of zeros and ones:
o Random Number Generators;
o Random search on a binary tree [philogenetic];
o Binary encoding of numbers.

We work by examples, and in random order.
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Binary Encoding of Numbers

» Let x be a number between zero and one.
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Binary Encoding of Numbers

» Let x be a number between zero and one.
» We can write

where xi, x>, ... are either zero or one.

» If there are two ways of doing this [dyadic rationals| then opt for the
non-terminating expansion.
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> We might write x = [x1,x2,...] instead of x = 372, 27x;.
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> We might write x = [x1,x2,...] instead of x = 372, 27x;.
. 0=1[0,0,...]
> 1=[1,1,...] because 32,27/ =1
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» We might write x = [x1,x2,...] instead of x =32, 27x;.
, 0=1[0,0,..]

> 1=[1,1,...] because 32,27/ =1

> 0.5 can be written in two different ways.
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» We might write x = [x1,x2,...] instead of x =32, 27x;.
» 0=10,0,...]
> 1=[1,1,...] because 32,27/ =1
> 0.5 can be written in two different ways.
o Here is one:
1 0 0
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» We might write x = [x1,x2,...] instead of x =32, 27x;.
, 0=1[0,0,..]

> 1=[1,1,...] because 32,27/ =1

> 0.5 can be written in two different ways.

o Here is one: i 0 o
Here is another:
05—0+1+1+
T2 48

This works because 3,277 =1/2.
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» We might write x = [x1,x2,...] instead of x =32, 27x;.
, 0=1[0,0,..]

> 1=[1,1,...] because 32,27/ =1

> 0.5 can be written in two different ways.

o Here is one: i 0 o
Here is another:
05—0+1+1+
T2 48

This works because 3,277 =1/2.
> Infinite-option convention yields:

05=1[0,1,1,...].
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An Algorithm for Finding the Digits

» Let x be a fixed number between zero and one
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o Ask twenty-twenty style:
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An Algorithm for Finding the Digits
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An Algorithm for Finding the Digits

) Let x be a fixed number between zero and one
o Ask twenty-twenty style:
o Is x < 0.57 If yes then x; = 0; else, x; =1
Is y1» =2(x— %xl) < 0.57 If yes then x, = 0; else, x, =1
o Is yo = 2(y1 — 3x2) < 0.57 If yes then x3 = 0; else, x; =1

> Why does this work? Hint:

_ % N+
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Symbolic Dynamics [An Alternative]

o Split [0, 1] into two subintervals [0,0.5] and (0.5, 1];
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Symbolic Dynamics [An Alternative]
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> Call whichever [dyadic] interval x fell in last /;
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» Split [0, 1] into two subintervals [0,0.5] and (0.5, 1];

» If x falls in the left interval then x; = 0; if x falls in the right one then
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Symbolic Dynamics [An Alternative]

» Split [0, 1] into two subintervals [0,0.5] and (0.5, 1];

» If x falls in the left interval then x; = 0; if x falls in the right one then
x1 = 1;

> Call whichever [dyadic] interval x fell in last /;

» Split /1 into two subintervals each half the length of /;;

o If x falls in the left one x, = 0; if x falls in the right one x» = 1;

» Call whichever [dyadic] interval x fell in last f;

W Try it for x =0.5 05=[0,1,1,..]

> What if you split into [0,0.5) and [0.5,1] etc.?

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 6 /21



Dyadic Intervals

o These are the intervals we obtained by subdividing.
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Dyadic Intervals

> These are the intervals we obtained by subdividing.

» A dyadic interval is a subintervals of [0, 1] that has length 27" for
some integer n > 0.

> A dyadic interval of length n > 1 can be written as

[j Jj+1

on’ 2n:| if j=0,2,...is even,
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Dyadic Intervals

> These are the intervals we obtained by subdividing.

» A dyadic interval is a subintervals of [0, 1] that has length 27" for
some integer n > 0.

> A dyadic interval of length n > 1 can be written as

g
[J “L} if j=0,2,... s even,

on* on
L
(2{1;] =15 . s o

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 7/21



Dyadic Intervals

> These are the intervals we obtained by subdividing.

» A dyadic interval is a subintervals of [0, 1] that has length 27" for
some integer n > 0.

> A dyadic interval of length n > 1 can be written as

i1
[;,,H;} if j=0,2,... is even,

j oj+1
on’ on

] if j=1,3,...is odd

> Let 9, denote all dyadic intervals of length 27".
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Dyadic Intervals

> These are the intervals we obtained by subdividing.

» A dyadic interval is a subintervals of [0, 1] that has length 27" for
some integer n > 0.

> A dyadic interval of length n > 1 can be written as

i1
[;,,H;} if j=0,2,... is even,

j oj+1
on’ on

] if j=1,3,...is odd

> Let 9, denote all dyadic intervals of length 27".
 #Dp =2" (check!)
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Uniform Sampling
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Uniform Sampling

o Let X1, X5, ... be independent random variables
o Pr{X; =0} =Pr{X; =1} =1 forall j > 1
» For all sequences ay, ..., a, of zeros and ones,
0 1
Pr{Xlzal,... ,Xn:a,,}:]l_llPr{Xj:aj}:E. (1)
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» For all sequences ay, ..., a, of zeros and ones,
0 1
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Uniform Sampling

o Let X1, X5, ... be independent random variables
o Pr{X; =0} =Pr{X; =1} =1 forall j > 1
» For all sequences ay, ..., a, of zeros and ones,
0 1
Pr{Xlzal,... ,Xn:a,,}:]l_llPr{)g:aj}:E. (1)

» Let X be a random variable who [random] binary digits are
X17X2, 5000 I.e.,

00 .
X = Z 2—}’
j=1

» By (1), Pr{X €1} =2""for all | € Z,.
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Zero-One Construction of Length [Lebesgue Measure]

> We just argued that Pr{X € I} = length(/) for all dyadic intervals /.

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 9/21



Zero-One Construction of Length [Lebesgue Measure]

> We just argued that Pr{X € I} = length(/) for all dyadic intervals /.

> General measure theory tells us that for all sets / C [0,1],
Pr{X € I} = length(/),

provided that we can attribute “length” to /.
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Zero-One Construction of Length [Lebesgue Measure]

> We just argued that Pr{X € I} = length(/) for all dyadic intervals /.
> General measure theory tells us that for all sets / C [0,1],

Pr{X € I} = length(/),

provided that we can attribute “length” to /.
> X is “distributed uniformly on [0, 1]"
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Borel's Strong Law of Large Numbers

> Recall X3, X5, ... are independent, and

1, with probab.
X=1,
0, with probab.

NI= N[
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Borel's Strong Law of Large Numbers

> Recall X3, X5, ... are independent, and
X; = {1, with probab. %
j.

0, with probab.

» (Expectations)

1 1 1 .
EXJ-—<1><2>+<O><2>—2 for all 4
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Borel's Strong Law of Large Numbers

> Recall X3, X5, ... are independent, and

1, with probab.
X=1,
0, with probab.

NI= N[

o (Expectations)

1 1 1 .
EXJ-—(1><2>+<O><2>—2 for all 4

> (Borel's Theorem, 1909) With probability one:

 Xp44Xe . EXg+-+EX, 1
lim ——— = |lim = —,

n—o0 n n—o0 n 2
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Normal Numbers

Xl++Xn — l
= 5.

o Borel's theorem: With probab. one, lim,_ -
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Normal Numbers

o Borel's theorem: With probab. one, lim, . % = %

) w is also the fraction of 1's in the first n digits of X
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Normal Numbers

» Borel's theorem: With probab. one, lim,_ % = %

) w is also the fraction of 1's in the first n digits of X

o Since Pr{X € I} = length(/),

1
Length {x : asymp. fraction of ones = 2} = 1.
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Normal Numbers

» Borel's theorem: With probab. one, lim,_ M = %

o w is also the fraction of 1's in the first n digits of X
o Since Pr{X € I} = length(/),

1
Length {x : asymp. fraction of ones = 2} = 1.

5> A number x € [0,1] is normal if lim,_,o Xt = 1.
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Normal Numbers

» Borel's theorem: With probab. one, lim,_ M = %

o w is also the fraction of 1's in the first n digits of X
o Since Pr{X € I} = length(/),

1
Length {x : asymp. fraction of ones = 2} = 1.
5> A number x € [0,1] is normal if lim,_,o Xt = 1.

» Borel's theorem: Nonnormal numbers are of length zero.
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Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base > 2
for that matter):

X =372 107x;, where x; € {0,...,9}.
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Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base > 2
for that matter):

' x=372,107/x;, where x; € {0,...,9}.

> x is normal in base ten if

n—oo

12 1
j=1
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Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base > 2
for that matter):

' x=372,107/x;, where x; € {0,...,9}.

> x is normal in base ten |f
| Hxi= 0} = = lim 2 1{x; =0} = =
HL";O*Z =0 == ln s 2 =9 =15

> Borel's theorem: Almost every number is normal in base ten. In fact,
almost every number is normal in all bases!
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o There are no numbers that are known to be normal in all bases.
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o (Champernowne, 1933) 0.1234567891011121314... is normal in base
ten
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> Champernnown's number is also transcendental (Mahler)
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[conjectured by Champernowne, 1933]

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 13 /21



o There are no numbers that are known to be normal in all bases.

» (Champernowne, 1933) 0.1234567891011121314. .. is normal in base
ten

> Champernnown's number is also transcendental (Mahler)

> (Copeland and Erdés, 1946) 0.23571113... is normal in base ten
[conjectured by Champernowne, 1933]
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o There are no numbers that are known to be normal in all bases.

» (Champernowne, 1933) 0.1234567891011121314. .. is normal in base
ten

> Champernnown's number is also transcendental (Mahler)

> (Copeland and Erdés, 1946) 0.23571113... is normal in base ten
[conjectured by Champernowne, 1933]

> and a few others
' Is /10 normal? How about 1/2/10?
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Random-Number Generators

o Your computer generates X uniformly between 0 and 1.
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Random-Number Generators

» Your computer generates X uniformly between 0 and 1.

o Is it the case that X has the correct distribution?

» The binary digits Xi, Xo, ... have lots of structure; so they need to
pass various statistical tests (lots known)
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Random-Number Generators

» Your computer generates X uniformly between 0 and 1.
o lIs it the case that X has the correct distribution?

» The binary digits Xi, Xo, ... have lots of structure; so they need to
pass various statistical tests (lots known)

o All RNG's will fail the true test of randomness: X;'s have to be
normal in all bases.

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 14 /21



Ternary Expansions

> Let x =[0,1], and write uniquely,

% where x; € {0,1,2}.

3
Il
M2
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Ternary Expansions

> Let x =[0,1], and write uniquely,

XK=
J

% where x; € {0,1,2}.

M2

» The ternary Cantor set %"

% = closure of {x€[0,1]: x; € {0,2}}

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 15 /21



Ternary Expansions

> Let x =[0,1], and write uniquely,

XK=
J

% where x; € {0,1,2}.

M2

» The ternary Cantor set %"
% = closure of {x€[0,1]: x; € {0,2}}

» x =1/3 is in the Cantor set; in fact, x =[0,2,2,.. ]
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Ternary Expansions

> Let x =[0,1], and write uniquely,

XK=
J

% where x; € {0,1,2}.

M2

» The ternary Cantor set %"
% = closure of {x€[0,1]: x; € {0,2}}

» x =1/3 is in the Cantor set; in fact, x =[0,2,2,.. ]
, If%<x<%thenx¢‘5etc.
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Ternary Expansions

> Let x =[0,1], and write uniquely,

XK=
J

% where x; € {0,1,2}.

M2

» The ternary Cantor set %"
% = closure of {x€[0,1]: x; € {0,2}}

» x =1/3 is in the Cantor set; in fact, x =[0,2,2,.. ]
, If%<x<%thenx¢‘5etc.
> ¢ = The middle-thirds Cantor set
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Devil's Staircase

o Let Xi,X5,... be independent,

1
PI’{X]_ = O} = Pr{X1 = 2} = 5
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Devil's Staircase

o Let X1,X5,... be independent,
1
PI’{X]_ = O} = Pr{X1 = 2} = 5
o Let X be “uniformly distributed” on %; i.e.,

X=5%8  —  pxee}-1
= - r — 1.
1;3’
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Devil's Staircase

o Let X1,X5,... be independent,
1
PI’{X]_ = O} = Pr{X1 = 2} = 5
o Let X be “uniformly distributed” on %; i.e.,
< X
2 xew)

o Distribution function of X,

F(x):=Pr{X < x} “devil's staircase”
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Devil's Staircase

o Let Xi,X5,... be independent,

1
PI’{X]_ = O} = Pr{X1 = 2} = 5

o Let X be “uniformly distributed” on %; i.e.,

X=5%8  —  pxee}-1
= — r = llo
1;3’

o Distribution function of X,

F(x):=Pr{X < x}

“devil’s staircase”

> Aka Cantor—Lebesgue function
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The Cantor—Lebesgue Function

0.8 4

0.6 4

the cantor-lebesgue function

0.4 0.5 0.6 0.7 0.8 0.9 1
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The Cantor—Lebesgue Function

Theorem (Cantor)
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Theorem (Cantor)

C :={x: F'(x) exists and is = 0} has length one.

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 18 / 21



The Cantor—Lebesgue Function

Theorem (Cantor)

C :={x: F'(x) exists and is = 0} has length one.

F is nondecreasing and continuous

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 18 / 21



The Cantor—Lebesgue Function

Theorem (Cantor)

C :={x: F'(x) exists and is = 0} has length one.
F is nondecreasing and continuous
F(0)=0
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The Cantor—Lebesgue Function

Theorem (Cantor)

C :={x: F'(x) exists and is = 0} has length one.
F is nondecreasing and continuous

F(0)=0
F(1)=1

Fundamental theorem of calculus(?):

1= F(1) - F(0) = /01 F'(x)dx =0
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The Cantor—Lebesgue Function

Theorem (Cantor)

C :={x: F'(x) exists and is = 0} has length one.
F is nondecreasing and continuous

F(0)=0
F(1)=1

Fundamental theorem of calculus(?):
1
1= F(1) - F(0) = / F'(x)dx =0
0

Mind those technical conditions of theorems!
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Hausdorff Dimension

Let S be a set in R”. Roughly speaking, its Hausdorff dimension

1
i = D E| —— 00
dim, S max{sE[O,n] <||X—Y||s> < },

where X and Y are:

> independent;
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Hausdorff Dimension

Let S be a set in R”. Roughly speaking, its Hausdorff dimension

1
i = D E| —— 00
dim, S max{sE[O,n] <||X—Y||s> < },

where X and Y are:

> independent;

o both distributed “uniformly” on S
(Frostman, 1935)
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Dimension of the Cantor Set

Theorem (Hausdorff, 1919)
dim, % = log3(2) =In2/In3~0.7615
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Dimension of the Cantor Set

Theorem (Hausdorff, 1919)
dim, % = log3(2) =In2/In3~0.7615

Strategy: Let X and Y be uniformly distributed on %, both independent.
Then we wish to demonstrate that:

if 5 > logs(2) then E(|X — Y|~%) = oo;

D. Khoshnevisan (Salt Lake City, Utah) UofU: U-Coll '06 20 /21



Dimension of the Cantor Set

Theorem (Hausdorff, 1919)
dim, % = log3(2) =In2/In3~0.7615

Strategy: Let X and Y be uniformly distributed on %, both independent.
Then we wish to demonstrate that:

if s > logs(2) then E(|X — Y|~5) = oo;
if s < logs(2) then E(|X — Y|™°) < oc.
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Finally, a Proof

> Let us prove that if s < logz(2) then E(|X — Y|~°) < co. This proves
that dim,, € > log3(2), and is in fact the harder bound.
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Finally, a Proof

> Let us prove that if s < logz(2) then E(|X — Y|~°) < co. This proves
that dim,, € > log3(2), and is in fact the harder bound.

o Let N:=min{j >1: X; # Y;}; then Pr{N > k} =27 for all k > 0.
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> Let us prove that if s < logz(2) then E(|X — Y|~°) < co. This proves
that dim,, € > log3(2), and is in fact the harder bound.

o Let N:=min{j >1: X; # Y;}; then Pr{N > k} =27 for all k > 0.
o Therefore, Pr{N = k} = Pr{N > k — 1} — Pr{N > k} = 27K,

o We have
1 1
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|X_Y|s —3Ns
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Finally, a Proof

> Let us prove that if s < logz(2) then E(|X — Y|~°) < co. This proves
that dim,, € > log3(2), and is in fact the harder bound.

o Let N:=min{j >1: X; # Y;}; then Pr{N > k} =27 for all k > 0.
o Therefore, Pr{N = k} = Pr{N > k — 1} — Pr{N > k} = 27K,

o We have | |
T <
|X_ Y|s — 3Ns

» If s < logz(2) then

() se(ok) - e
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