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Local Structure of the Sheet

e Brownian sheet Let B, = (B},..., B#), where
B''s are i.i.d. centered, cont. Gauss. with

E{lept : B,Llw} = min(s,u) x Min(t,v).

e Localtheory (Dalang and Walsh ‘90-93; ; Ehm
'83; Orey and Pruitt '74): fix s, t

Bsteytte, =
1 1
Bst+t2831(e1) + 5282(2) + Bey en,
where (51, 8>, B) are independent processes,

allindependent of B 4 3;'s Are Brownian mo-
fions, and B is a Brownian sheet.



(Local Structure of the Sheet)

;. ifeq,ep are small,

additive BM
Bite; 146, = B11+ B1(e1) + Ba(e2),

There are also analyfical consequences, since ad-
ditive BM “corresponds” to

e the operator (3A)? (Knh-Shi ‘00; Kh-Xiao ‘01);

e the 2-par convolution semigroup (s, t) — HgHy,
where H denote heat semigroup; (ibid.);

o the operator 3A — w2 (ibid. + Le Gall *00).
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(Local Structure of the Sheet)

Here, we are inferested in non-local results and
wish o show-case the viewpoint that B can also
be thought of as a sfream of inferacting Brown-
lan moftions, where the nature of the interaction
seems to be problem-specific. Often, this can be
tfranslated fo problems about a single Brownian
motion in really high dimensions.

Open Problem 0 Make one non-ftrivial calculo-
fion, where nonfrivial means anything that uses
deeper things than the linear structure of the Gauss
space. E.g., fwo examples from marth. stafistics:

e find the law of SUP[p 1]2 B (circa '40°s-"50°s)

e findthelaw of [} 172 1(B, ,>0) dsdt (Circalate
‘60’s or early ‘70°s) |
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Relation to Eigenvalue Problems

Theorem 1 (Csdaki-Kh-Shi ’00; Li-Shao '01) There
are c1 and ¢» such that foralle € (0,1),

2 2
e CUINel® < P sup B < e} <e2lnel”
[0,1]2

Nofe that for a Brownian motion 3,

INP{sup B8 <e} ~Ine.
[0,1]

We infend to argue that, in the present context,
the supremum of Brownian sheet looks roughly
the same as the supremum of Brownian motion
in dimension d ~ 2log(1/¢). In fact, Theorem 1
can be related to an eigenvalue estimate for a
coneind = 2log(l/e).



(Relation to Eigenvalue Problems)

Not much happens away from the axes, as we
shall heuristically argue in the next slide. Take this
for granted to see that heuristically,

sup B<e "<=" sup sup B__; <e.
[0,1]2 720 0<v<1 7Y

Thus, writing @ for Brownian motion,

P{sup B <e} HIP sup B,-j, <&}
[0,1]2 =0 vel0,1]

H P{sup e 26 <e}

=o [0,1]
~ H [€e§ A 1],
J=0
where ~ does not mean anything precise.

Open Problem 1 Can this argument be made rig-
orous? Is there a limifing constant? Is it a %?
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(Relation to Eigenvalue Problems)

The following proves, anectodally, that not much
happens off of the axes.

Theorem 2 (Csdaki-Kh-Shi'01) For all 0 < a < b,
there exists a 0(a,b) = 6 > 1, such that

InNP{ sup B<e}~0Ilne, ase— 0.
[a,b] x[0,1]

Thus, the cdf all the way upto the axis, dies like
e—|109¢l”__faster than any power law—while away
from an axis, there is a power law.

Does 0(a,b) — oo Qs a — o0o?
If so, how fast? --- Eigenvalue esfimates in high
dimensions.
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Towards a Feynman-Kac Formula

Define the Gojourn measure,

G(F) — /A)l]Q 1(Bs,t€F) ds dt.

Theorem 3 (Kh-Pemantle '01) There are c1 andcs
such that foralle € (0,1),

e—c1linel? <P{&(0,0) < e} < e~ nel?

For a Brownian motion g3,

INP{S3(0,00) <&} ~ —Ine.

This is from the arc-sine law. In particular, there is

no arc-sine law for the sheet. This was posed by
R. Pyke.

Open Problem 3~ Is there a limiting constant?
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(Towards a Feynman-Kac Formula)

For most interesting F with F'° 5 0, the Feynman-
Kac tells us that Gg(F") (for Brownian motion) has
exponential tails. For Brownian sheet, the story is
more complicated still, e.Q.,

Theorem 4 (Kh-Pemantle '01) There are ¢y andcs
such that for alle € (0, 1),

2

| Ing| [Ine]

<P{6(-1,1)<e} <e 2= .

e

What is the sharp rate? Is there
a limiting constant? Is there a finite-dimensional
"Feynman-Kac” type formula?
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Explosion of Local Times Along Lines

Let W,, denote the C][0, co)-valued Brownian mo-
fion

Wu(v) = Buw, wu,v2>0.

The process W, has local times L?(Wu) for each
w, Viz.,

t
LYW) = [ 80(Wu(v)) dv.
This is the semi-mart. local time and
[Wu]fu — Uuv.

1
So, LY(Wy) has the same law as u~2LY (W), i.e.,
1
Brownian local fime times v~ 2. Thus,

lim, LY(Wy) = 400, in probability.



(Explosion of Local Times along Lines)

When counting excursions of the sheet in ‘95, |
asked if the above holds almost surely. Now, by
scaling, if up, — 0O rapidly enough, e.g., If u;, =
e~k , using scaling and Borel-Cantell:

Jim L§(Wy,) = +o0, almost surely.
— OO

Thus, a.s. convergence < nothing much hap-
pens to the oscillations of v — L?(Wu) in the
block [ug41,ug]. This rings of a maximal inequal-
ity for the u— LY(Wy):

Theorem 5 (Kh-Révész-Shi '01) Ass — 0,

~5(1+0(1)isgTing 7

P{ inf LO9(W,) < <
{1§'u§2 i(Wy) <e}<e
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(Explosion of Local Times along Lines)

From this, one can prove that

lim, LY(Wy) = 400, almost surely.

Open Problem 5* Is fhere ~ such that

inf L9 ~~Ine?
|nP{1§I222 1(Wy) <e}~vlne

Is v > 17

There is not alot of room; indeed, it is easy fo
check thatif so, v > 1, since

inf L9 < el > ce.
P{lglg,ng 1(Wy) <e} >ce
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(Explosion of Local Times along Lines)

There is something special about the local fime
at 0. Indeed, if we write L} (Wy,) = supq L§ (Wy),
one can easily show the following

Theorem 6 (Kh-Révész-Shi’01) Ass — 0,

InNP{ inf L3 ~ —Dj2e72
{1§|u§2 1(WU)<€} ]18 ’

where j1 is the first positive zero of the modified
Bessel function Jy.
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(Explosion of Local Times along Lines)

Here is an application to ergodic theory in Wiener
space. Recall the ratio ergodic theorem for Brow-
nian motion: Vf,g € L (dx) with [g(x)dx # 0,
and forall v € [1, 2],

fo fWyu(v))dv _ [ f(z)dx

oo [g(Wu(v))dv [ g(z) da’

In fact, this holds quasi-surely (Fitzsimmons ‘99).
for all f, g given,

i SO S (W) dv _ J f(2) da

t—oo [§g(Wu(v))dv [ g(x)dx’
Nofe the order of the quantifiers! If f and ¢ are
slightly nicer than L1, the above holds in a very
sfrong sense:

a.s.

Vu € [1,2], a.s.
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(Explosion of Local Times along Lines)

Theorem 7 (Kh—-Révész-Shi’01) If f,g € L1({1 +
lx|}dx) and [ g(x) dx # 0,

- I5f(Wu(s))ds [ fz)dz| _
tlrgo 1?’122 fég(Wu(S)) ds [g(x)dxl 0,

almost surely.

No raftes seem possible, in general.

Can the L1 ({1 + |z|}dz) con-
dition be dropped to L1(dx)?
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(Towards a Feynman-Kac Formula)

Next, we want a reason for

| log e|

P{ inf LY < e ‘log[loge],
{1§.2§2 1(Wu) <e} <e

While | do not have a simple explanation for this,
here is an attempt at a heuristic.

First, one makes rigorous the fact that no mat-
ter the value of w, if W, makes of excursions
from (—o0,0) to (0,), then the chance that
LY(Wy,) < eis very small. This is essentially a (con-
ditional) large-deviations estimate, once one knows
what really is. On the other hand, it is not
hard to check that the LIL holds quasi-everywhere
(Fukushima, Zimmerman, Walsh), i.e., with proba-
bility one:

: Wu(v)
lim sup
v—0 \/21)|n||nv|

Note the order of the quantifiers!

=1, Vu € [1,2].
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(Towards a Feynman-Kac Formula)

This suggests that no matter the value of w, Wy,
must make alot of excursions from (—oo, 0) o (0, co).
But how many? For this, we need to study Brown-
lan sheet on three scales.

First, consider the time interval [0, 1] ( ), and
split it as Uy ol®yT1, @f], ( ) where &, =

32¢q °k for fairly explicit constant g (in tferms of
g). It then turns out that all of the action is for the
values n < k < 2n, wheren = |Ing| = In|Ing|.

( )
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(Towards a Feynman-Kac Formula)

An inferval g, = [CDIIZii, CI>£] IS if simultane-
ously over all uw € [1,2], v — Wy(v) upcrosses or
downcrosses [—sdD,;i/lz,adD,;k/Q] for some t ¢ 77
where J7 is an appropriately chosen interval in
di.. Then, roughly speaking, J;.'s are good in an
independent fashion as k varies. So, by “large
deviations”, as k varies from n 1o 2n, we expect
n good intervals. Once you see a good interval,
another large-deviations estimate shows that the

local time will be large with "good” probabillity.

o5-h



