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Local Structure of the Sheet

• Brownian sheet Let Bt = (B1
t , . . . , Bd

t ), where
Bi’s are i.i.d. centered, cont. Gauss. with

E {B1
s,t ·B1

u,v} = min(s, u)×min(t, v).

• Local theory (Dalang and Walsh ’90–’93; ; Ehm
’83; Orey and Pruitt ’74): fix s, t

Bs+ε1,t+ε2 =

Bs,t + t
1
2β1(ε1) + s

1
2β2(ε2) +Bε1,ε2,

where (β1, β2,B) are independent processes,
all independent of Bs,t; βi’s are Brownian mo-
tions, andB is a Brownian sheet.
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[Local Structure of the Sheet]

) if ε1, ε2 are small,

B1+ε1,1+ε2 ≈ B1,1+

additive BM︷ ︸︸ ︷
β1(ε1) + β2(ε2),

There are also analytical consequences, since ad-
ditive BM “corresponds” to

• the operator (1
2∆)2 (Kh-Shi ’00; Kh-Xiao ’01);

• the 2-par convolution semigroup (s, t) 7→ HsHt,
where H denote heat semigroup; (ibid.);

• the operator 1
2∆− u2 (ibid. + Le Gall ’00).
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[Local Structure of the Sheet]

Here, we are interested in non-local results and
wish to show-case the viewpoint that B can also
be thought of as a stream of interacting Brown-
ian motions, where the nature of the interaction
seems to be problem-specific. Often, this can be
translated to problems about a single Brownian
motion in really high dimensions.

Open Problem 0? Make one non-trivial calcula-
tion, where nontrivial means anything that uses
deeper things than the linear structure of the Gauss
space. E.g., two examples from math. statistics:

• find the law of sup[0,1]2 B (circa ’40’s-’50’s)

• find the law of
∫∫
[0,1]2 1(Bs,t>0) ds dt (circa late

’60’s or early ’70’s)
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Relation to Eigenvalue Problems

Theorem 1 (Csáki–Kh–Shi ’00; Li–Shao ’01) There
are c1 and c2 such that for all ε ∈ (0,1),

e−c1| ln ε|2 ≤ P{ sup
[0,1]2

B < ε} ≤ e−c2| ln ε|2.

Note that for a Brownian motion β,

ln P{sup
[0,1]

β < ε} ∼ ln ε.

We intend to argue that, in the present context,
the supremum of Brownian sheet looks roughly
the same as the supremum of Brownian motion
in dimension d ≈ 2 log(1/ε). In fact, Theorem 1
can be related to an eigenvalue estimate for a
cone in d ≈ 2 log(1/ε).
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[Relation to Eigenvalue Problems]

Not much happens away from the axes, as we
shall heuristically argue in the next slide. Take this
for granted to see that heuristically,

sup
[0,1]2

B < ε “⇐⇒” sup
j≥0

sup
0≤v≤1

Be−j,v ≤ ε.

Thus, writing β for Brownian motion,

P{ sup
[0,1]2

B < ε} ≈
∞∏

j=0

P{ sup
v∈[0,1]

Be−j,v ≤ ε}

=
∞∏

j=0

P{sup
[0,1]

e−
j
2β ≤ ε}

≈
∞∏

j=0

[εe
j
2 ∧ 1],

where ≈ does not mean anything precise.

Open Problem 1? Can this argument be made rig-
orous? Is there a limiting constant? Is it a 1

2?
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[Relation to Eigenvalue Problems]

The following proves, anectodally, that not much
happens off of the axes.

Theorem 2 (Csáki–Kh–Shi ’01) For all 0 < a < b,
there exists a θ(a, b) = θ > 1, such that

ln P{ sup
[a,b]×[0,1]

B < ε} ∼ θ ln ε, as ε → 0.

Thus, the cdf all the way upto the axis, dies like
e−| log ε|2—faster than any power law—while away
from an axis, there is a power law.

Open Problem 2? Does θ(a, b) → ∞ as a → ∞?
If so, how fast? · · · Eigenvalue estimates in high
dimensions.
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Towards a Feynman–Kac Formula

Define the Sojourn measure,

S(F) =
∫∫

[0,1]2
1(Bs,t∈F ) ds dt.

Theorem 3 (Kh–Pemantle ’01) There are c1 and c2
such that for all ε ∈ (0,1),

e−c1| ln ε|2 ≤ P{S(0,∞) < ε} ≤ e−c2| ln ε|2.

For a Brownian motion β,

ln P{Sβ(0,∞) < ε} ∼ − ln ε.

This is from the arc-sine law. In particular, there is
no arc-sine law for the sheet. This was posed by
R. Pyke.

Open Problem 3? Is there a limiting constant?
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[Towards a Feynman–Kac Formula]

For most interesting F with F ◦ 3 0, the Feynman–
Kac tells us that Sβ(F) (for Brownian motion) has
exponential tails. For Brownian sheet, the story is
more complicated still, e.g.,

Theorem 4 (Kh–Pemantle ’01) There are c1 and c2
such that for all ε ∈ (0,1),

e−c1
| ln ε|2

ε ≤ P{S(−1, 1) < ε} ≤ e−c2
| ln ε|

ε .

Open Problem 4? What is the sharp rate? Is there
a limiting constant? Is there a finite-dimensional
“Feynman–Kac” type formula?
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Explosion of Local Times Along Lines

Let Wu denote the C[0,∞)-valued Brownian mo-
tion

Wu(v) = Bu,v, u, v ≥ 0.

The process Wu has local times L0
t (Wu) for each

u, viz.,

L0
t (Wu) =

∫ t

0
δ0(Wu(v)) dv.

This is the semi-mart. local time and

[Wu]v = uv.

So, L0
1(Wu) has the same law as u−

1
2L0

1(W1), i.e.,

Brownian local time times u−
1
2. Thus,

lim
u→0

L0
1(Wu) = +∞, in probability.
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[Explosion of Local Times along Lines]

When counting excursions of the sheet in ’95, I
asked if the above holds almost surely. Now, by
scaling, if uk → 0 rapidly enough, e.g., if uk =

e−k, using scaling and Borel-Cantelli:

lim
k→∞

L1
0(Wuk) = +∞, almost surely.

Thus, a.s. convergence ⇔ nothing much hap-
pens to the oscillations of u 7→ L0

1(Wu) in the
block [uk+1, uk]. This rings of a maximal inequal-
ity for the non-semimartingale u 7→ L0

1(Wu):

Theorem 5 (Kh–Révész–Shi ’01) As ε → 0,

P{ inf
1≤u≤2

L0
1(Wu) ≤ ε} ≤ e

−1
2(1+o(1)) | log ε|

log | log ε|.
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[Explosion of Local Times along Lines]

From this, one can prove that

lim
u→0

L0
1(Wu) = +∞, almost surely.

Open Problem 5? Is there γ such that

ln P{ inf
1≤u≤2

L0
1(Wu) < ε} ∼ γ ln ε?

Is γ > 1?

There is not alot of room; indeed, it is easy to
check that if so, γ ≥ 1, since

P{ inf
1≤u≤2

L0
1(Wu) ≤ ε} ≥ cε.
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[Explosion of Local Times along Lines]

There is something special about the local time
at 0. Indeed, if we write L?

1(Wu) = supa La
1(Wu),

one can easily show the following

Theorem 6 (Kh–Révész–Shi ’01) As ε → 0,

ln P{ inf
1≤u≤2

L?
1(Wu) < ε} ∼ −2j21ε−2,

where j1 is the first positive zero of the modified
Bessel function J0.
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[Explosion of Local Times along Lines]

Here is an application to ergodic theory in Wiener
space. Recall the ratio ergodic theorem for Brow-
nian motion: ∀f, g ∈ L1(dx) with

∫
g(x) dx 6= 0,

and for all u ∈ [1,2],

lim
t→∞

∫ t
0 f(Wu(v)) dv∫ t
0 g(Wu(v)) dv

=

∫
f(x) dx∫
g(x) dx

, a.s.

In fact, this holds quasi-surely (Fitzsimmons ’99):
for all f, g given,

lim
t→∞

∫ t
0 f(Wu(v)) dv∫ t
0 g(Wu(v)) dv

=

∫
f(x) dx∫
g(x) dx

, ∀u ∈ [1,2], a.s.

Note the order of the quantifiers! If f and g are
slightly nicer than L1, the above holds in a very
strong sense:
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[Explosion of Local Times along Lines]

Theorem 7 (Kh–Révész–Shi ’01) If f, g ∈ L1({1 +

|x|}dx) and
∫

g(x) dx 6= 0,

lim
t→∞ sup

1≤u≤2

∣∣∣∣
∫ t
0 f(Wu(s)) ds∫ t
0 g(Wu(s)) ds

−
∫

f(x) dx∫
g(x) dx

∣∣∣∣ = 0,

almost surely.

No rates seem possible, in general.

Open Problem 7? Can the L1({1 + |x|}dx) con-
dition be dropped to L1(dx)?
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[Towards a Feynman–Kac Formula]

Next, we want a reason for

P{ inf
1≤u≤2

L0
1(Wu) < ε} ≤ e

−c
| log ε|

log | log ε|.

While I do not have a simple explanation for this,
here is an attempt at a heuristic.

First, one makes rigorous the fact that no mat-
ter the value of u, if Wu makes alot of excursions
from (−∞,0) to (0,∞), then the chance that
L0

1(Wu) < ε is very small. This is essentially a (con-
ditional) large-deviations estimate, once one knows
what alot really is. On the other hand, it is not
hard to check that the LIL holds quasi-everywhere
(Fukushima, Zimmerman, Walsh), i.e., with proba-
bility one:

lim sup
v→0

Wu(v)√
2v ln | ln v|

= 1, ∀u ∈ [1,2].

Note the order of the quantifiers!
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[Towards a Feynman–Kac Formula]

This suggests that no matter the value of u, Wu

must make alot of excursions from (−∞,0) to (0,∞).
But how many? For this, we need to study Brown-
ian sheet on three scales.

First, consider the time interval [0,1] (scale 1), and
split it as ∪k≥0[Φ

k+1
k+1,Φk

k], (scale 2) where Φk =

32ε−2
0 k for a fairly explicit constant ε0 (in terms of

ε). It then turns out that all of the action is for the
values n ≤ k ≤ 2n, where n = | ln ε| ÷ ln | ln ε|.
(scale 3)
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[Towards a Feynman–Kac Formula]

An interval Jk = [Φk+1
k+1,Φk

k] is good if simultane-
ously over all u ∈ [1,2], v 7→ Wu(v) upcrosses or
downcrosses [−εΦ

−k/2
k+1 , εΦ

−k/2
k ] for some t ∈ J◦k

where J◦k is an appropriately chosen interval in
Jk. Then, roughly speaking, Jk’s are good in an
independent fashion as k varies. So, by “large
deviations”, as k varies from n to 2n, we expect
n good intervals. Once you see a good interval,
another large-deviations estimate shows that the
local time will be large with “good” probability.
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