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Large-scale structure of galaxies
S. F. Shandarin and Ya B. Zeldovich, Rev. Modern Phys. (1989)
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> dut = Aug dby, where by = 1([0, 1)) denotes 1-D Brownian motion
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» duy = Auy dby, where by = 1([0, t]) denotes 1-D Brownian motion
» The solution is the exponential martingale, uy := e

Abi—(A21/2)
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A simple model for intermittency
[¢(x) = (1/2)uf(x) + Aug(x)ns, uolx) = 1]

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

» duy = Auy dby, where by = 1([0, t]) denotes 1-D Brownian motion
» The solution is the exponential martingale, uy := b =(2t12)

» uy > 0as A — 00
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A simple model for intermittency
[¢(x) = (1/2)uf(x) + Aug(x)ns, uolx) = 1]

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

v

duy = Auy dby, where by = 1([0, t]) denotes 1-D Brownian motion
Abi—(A2t/2)

v

The solution is the exponential martingale, u; := e

v

u —»0as A — oo
E(uf) = exp {42t} — oo (fast!) as A — co

v
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A SHE simulation [u(x) = (1/2)uj(x) + Au(x)ne(x),
ug(x) = sin(mrx), 0 < x < 1; uy(0) = ut(1) = 0.]

A =0 (left; uy(x) = sin(mx) exp(—n%t/2)) and A = 0.1 (right)

D. Khoshnevisan (U. Utah)

Nonlinear Noise Excitation

October 9-11, 2014 4/20



A simulation [U(x) = (1/2)uf(x) + Aue(x)nix),

up(x) = sin(rx), 0 < x < 1; w(0) = u(1) = 0.]
A =2 (left) and A = 6 (right)

100

vart;from O to 0.1 [scaled] varx; from 0o 1 [scaled]
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> Oug(x) = Luy(x) + Ao(u(x))&(x);



> Jrulx) = Luelx) + Ao(u(x))&(x);
» xr € G:= an LCA group
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> Jrulx) = Luelx) + Ao(u(x))&(x);
» x € G:= an LCA group

» £ := space-time white noise [control measure mp, x mg]
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> Jrulx) = Luelx) + Ao(u(x))&(x);
» x € G:= an LCA group

» £ := space-time white noise [control measure mp, x mg]
» ¢ := L?(G)-generator of a Lévy process on G;
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> Orue(x) = Lux) + Aolug(x))&(x);
» x € G:= an LCA group
» £ := space-time white noise [control measure mp, x mg]

» ¢ := L?(G)-generator of a Lévy process on G;
» up € L?(G) non random
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> Jrulx) = Luelx) + Ao(u(x))&(x);

» x € G:= an LCA group

» £ := space-time white noise [control measure mp, x mg]
» ¢ := L?(G)-generator of a Lévy process on G;

» up € L?(G) non random

» A > 0 a parameter [the “level of the noise”]
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A family of SPDEs

Oruy(x) = Luy(x) + Aolu(x))&(x);

x € G:= an LCA group

& := space-time white noise [control measure mp, x mg]

% = L%(G)-generator of a Lévy process on G;

up € L?(G) non random

A > 0 a parameter [the “level of the noise”]

A priori fact. In many cases, dg > 0 such that

E(][Ilin?((;)) ~ exp{cA?} as A T oo [‘nonlinear noise excitation”].

vV VvV Y VvV VY
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A family of SPDEs

> Orur(x) = Luelx) + Aolulx))éelx);

x € G:= an LCA group

& := space-time white noise [control measure mp, x mg]

% = L%(G)-generator of a Lévy process on G;

up € L?(G) non random

A > 0 a parameter [the “level of the noise”]

A priori fact. In many cases, dq > 0 such that

E(||ut|[%2(G)) ~ exp{cA?} as A 1 oo ["nonlinear noise excitation”].

vV V. v Y VY

v

Language borrowed from NMR spectr. (Blimich, 1987); rough
idea probably older still
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A family of SPDEs

> Orur(x) = Luelx) + Aolulx))éelx);

x € G:= an LCA group

& := space-time white noise [control measure mp, x mg]

% = L%(G)-generator of a Lévy process on G;

up € L?(G) non random

A > 0 a parameter [the “level of the noise”]

A priori fact. In many cases, g > 0 such that

E(HutH%Q(G)) ~ exp{cA?} as A 1 oo ["nonlinear noise excitation”].

vV V. v Y VY

v

Language borrowed from NMR spectr. (Blimich, 1987); rough
idea probably older still
Question. Why?

v
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A family of SPDEs

> Orur(x) = Luelx) + Aolulx))éelx);

x € G:= an LCA group

& := space-time white noise [control measure mp, x mg]

% = L%(G)-generator of a Lévy process on G;

up € L?(G) non random

A > 0 a parameter [the “level of the noise”]

A priori fact. In many cases, g > 0 such that

E(HutH%Q(G)) ~ exp{cA?} as A 1 oo ["nonlinear noise excitation”].

vV V. v Y VY

v

Language borrowed from NMR spectr. (Blimich, 1987); rough
idea probably older still

Question. Why?

Answer has only to do with the topology of G.

v

v
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A family of SPDEs

vV VvV YV VY

Oruy(x) = Luy(x) + Aolu(x))&(x);

x € G:= an LCA group

& := space-time white noise [control measure mp, x mg]

% = L%(G)-generator of a Lévy process on G;

up € L?(G) non random

A > 0 a parameter [the “level of the noise”]

A priori fact. In many cases, dq > 0 such that

E(HutH%Q(G)) ~ exp{cA?} as A 1 oo ["nonlinear noise excitation”].
Language borrowed from NMR spectr. (Blimich, 1987); rough
idea probably older still

» Question. Why?
» Answer has only to do with the topology of G.
» Example of what is to come. “The noise excitation index g, when

it 4, is a topological invariant.”
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» G := the trivial group on one element
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» G := the trivial group on one element

» The only Lévy process on G is the constant process

«0>» «(Fr «Z» «E>» Q>



» G := the trivial group on one element

» The only Lévy process on G is the constant process
» Zf=0forallf:G—R
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» G := the trivial group on one element

» The only Lévy process on G is the constant process
» Zf=0forallf:G—-R

» Our SPDE is an arbitrary [t6 diffusion in R with no drift:

dut = )\,O(ut) dBt
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v

v

v

v

\{

G := the trivial group on one element

The only Lévy process on G is the constant process
Zf=0foral f:G - R
Our SPDE is an arbitrary 1td diffusion in R with no drift:

dus = )»G(ut) dB¢

Can add drift to the SPDE in order to get all Itd processes, but
we will not
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» G := Zy, the cyclic group on 2 elements [{0,1}, addition mod 1]
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» G := Zy, the cyclic group on 2 elements [{0,1}, addition mod 1]
» Lévy processes on G switch their state at rate k > 0
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» G := Zy, the cyclic group on 2 elements [{0,1}, addition mod 1]
» Lévy processes on G switch their state at rate k > 0

» Our SPDE yields the 2-D It6 diffusion f+ (u(0), u¢(1)):

[Uf(i) — Uf(O)] dt + )\,O(th(O))dBf(O),
[ue(0) — ue(1)] dt + Ao(us(1))dBy(1)



Example 2

Oy (x) = Luy(x) + Ao(ug(x))&(x)

v

G := Zy, the cyclic group on 2 elements [{0, 1}, addition mod 1]

v

Lévy processes on G switch their state at rate k > 0
Our SPDE yields the 2-D It6 diffusion t+ (us(0), u¢(1)):

v

duy(0) = k [ue(1) — uel0)] dt + Ao(uy(0))dB(0),
k [ue(0) — us(1)] dt + Ao(u(1))dBy(1).

v

2 Itd diffusions with attractive OU-type molecular forcing
[molecular diffusion for a 1-Dim 2-body system with elastic
bonds]
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Example 2

Opuy(x) = Luy(x) + Ao(ug(x))&(x)

v

G := Zy, the cyclic group on 2 elements [{0, 1}, addition mod 1]

v

Lévy processes on G switch their state at rate k > 0
Our SPDE yields the 2-D It6 diffusion t+ (us(0), u¢(1)):

v

duy(0) = k [ue(1) — uel0)] dt + Ao(uy(0))dB(0),
k [ue(0) — us(1)] dt + Ao(u(1))dBy(1).

v

2 1t6 diffusions with attractive OU-type molecular forcing
[molecular diffusion for a 1-Dim 2-body system with elastic
bonds]

Can be easily extended to G = Z,,

v
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» G = R and .Z = k&, —the stochastic heat equation on R
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» G = R and .Z = k&, —the stochastic heat equation on R

» G =1[0,1] and . = k6%, with periodic 6 condition—the
stochastic heat equation on the circle
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» G = R and .Z = k&, —the stochastic heat equation on R

» G =10,1] and .Z = k&2, with periodic & condition—the
stochastic heat equation on the circle

» G =Z% and . = kAz«—the semi-dicrete stochastic heat equation

«0>» «(Fr «Z» «E>»
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» G = R, [R.o with group multiplication = x]
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on R

» G = R, [R.o with group multiplication = x]
» X is a Lévy process on R iff X; = exp(V}) for a Lévy process V
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» G = R, [R.o with group multiplication = x]

» X is a Lévy process on R iff X; = exp(V}) for a Lévy process V
on R

» Eg., Xi = exp{B; + 6t}, where B = Br. motion on R
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Example 4 (A SHE with a quadratic scatterer)

v

G = R, [R.o with group multiplication = x]

v

X is a Lévy process on RZ iff X = exp(Vy) for a Lévy process ¥
on R

E.g. Xi = exp{B¢ + 6t}, where B = Br. motion on R
Our SPDE becomes [Itd6 formulal:

v

v

(x) = %IQU?(I) + (6 + %) xuy(x) + Ao(u(x))&lx).
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Example 4 (A SHE with a quadratic scatterer)

v

G = R, [R.o with group multiplication = x]

v

X is a Lévy process on RZ iff X = exp(Vy) for a Lévy process ¥
on R

E.g. Xi = exp{B¢ + 6t}, where B = Br. motion on R
Our SPDE becomes [It6 formula]:

v

v

u(x) = %rgug’(x) + (6 + 3) xuplx) + Aolu(x))&(x).

v

Aside. 6 = —1/2 is somewhat special [exp. mart.]:
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Example 4 (A SHE with a quadratic scatterer)

v

G = R, [R.o with group multiplication = x]

v

X is a Lévy process on RZ iff X = exp(Vy) for a Lévy process ¥
on R

E.g. Xi = exp{B¢ + 6t}, where B = Br. motion on R
Our SPDE becomes [It6 formula]:

v

v

u(x) = %rzug’(x) + (6 + 3) xuplx) + Aolu(x))&(x).

v

Aside. 6 = —1/2 is somewhat special [exp. mart.]:
» Drift-free SPDE
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Example 4 (A SHE with a quadratic scatterer)

v

G = R, [R.o with group multiplication = x]

v

X is a Lévy process on RZ iff X = exp(Vy) for a Lévy process ¥
on R

E.g. Xi = exp{B¢ + 6t}, where B = Br. motion on R
Our SPDE becomes [It6 formula]:

v

v

u(x) = %rzug’(x) + (6 + 3) xuplx) + Aolu(x))&(x).

v

Aside. 6 = —1/2 is somewhat special [exp. mart.]:

» Drift-free SPDE
» EX; = identity of RY,
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Example 4 (A SHE with a quadratic scatterer)

v

G = R, [R.o with group multiplication = x]

v

X is a Lévy process on RZ iff X = exp(Vy) for a Lévy process ¥
on R

E.g. Xi = exp{B¢ + 6t}, where B = Br. motion on R
Our SPDE becomes [It6 formula]:

v

v

u(x) = %rzug’(x) + (6 + 3) xuplx) + Aolu(x))&(x).

v

Aside. 6 = —1/2 is somewhat special [exp. mart.]:
» Drift-free SPDE
» EX; = identity of R%,
> QV: Yogicony Xty Xjn)* = tas n — oo as.
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Example 4 (A SHE with a quadratic scatterer)

v

G = R, [R.o with group multiplication = x]

v

X is a Lévy process on RZ iff X = exp(Vy) for a Lévy process ¥
on R

E.g. Xi = exp{B¢ + 6t}, where B = Br. motion on R
Our SPDE becomes [It6 formula]:

v

v

u(x) = %rzug’(x) + (6 + 3) xuplx) + Aolu(x))&(x).

v

Aside. 6 = —1/2 is somewhat special [exp. mart.]:
Drift-free SPDE
EX¢ = identity of RZ,

. —112
QV ZOgngQ”tj (XU+1)/2”X]'/2“) — f as n — oo a.s.
X is “Gaussian”

v

v vy
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Dalang’s Condition

Oru(x) = Luylx) + 1&(x)

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE o0 = 1. Then our SPDE has a function
solution if and only if

/G* < HRie‘P(X) > me:(dy) < oo, (D)

where G* := the dual group to G
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Dalang’s Condition

Oru(x) = Luylx) + 1&(x)

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE o0 = 1. Then our SPDE has a function
solution if and only if

/G* < 1+Rieqf<x> > me:(dy) < oo, (D)

where G* := the dual group to G

» mg- := Haar measure on G* normalized to make Fourier
transform an isometry on L*(G)
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Dalang’s Condition

Oru(x) = Luylx) + 1&(x)

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE o0 = 1. Then our SPDE has a function
solution if and only if

/G* < HRie‘P(m > me:(dy) < oo, (D)

where G* := the dual group to G

» mg- := Haar measure on G* normalized to make Fourier
transform an isometry on LQ(G)

» E(x,Xy) = exp(—t¥(x)) forall x € G*and t > 0
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Dalang’s Condition

Oru(x) = Luylx) + 1&(x)

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE o0 = 1. Then our SPDE has a function
solution if and only if

1
_ «(d , D
/G*<1+ReW(X)>mG<X)<OO (D)
where G* := the dual group to G

» mg- := Haar measure on G* normalized to make Fourier
transform an isometry on LQ(G)

» E(x,X¢) = exp(—t¥(x)) forall x € G*and t > 0

» (D) iff X Yt“1 has local times, where Y is an indept copy of X
[essentially due to Hawkes 1986]; see also Foondun—K-Nualart
(2011) and Eisenbaum-Foondun-K (2011)
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» We will need the linear solution to have a function solution in
order to be able to apply variation of parameters to the
non-linear equation;
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» We will need the linear solution to have a function solution in

order to be able to apply variation of parameters to the
non-linear equation;

» Therefore, (D) is assumed from now on

«0>» «(Fr «Z» «E>»
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» We will need the linear solution to have a function solution in

order to be able to apply variation of parameters to the
non-linear equation;

» Therefore, (D) is assumed from now on

» This is the only requirement for our Lévy process
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Remarks
Condition (D): [;.(1 + Re¥(x))™ mg-(dy) < oo

» We will need the linear solution to have a function solution in
order to be able to apply variation of parameters to the
non-linear equation;

» Therefore, (D) is assumed from now on
» This is the only requirement for our Lévy process

» Condition (D) always holds when G is discrete:
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Remarks
Condition (D): [;.(1 + Re¥(x))™ mg-(dy) < oo

» We will need the linear solution to have a function solution in
order to be able to apply variation of parameters to the
non-linear equation;

» Therefore, (D) is assumed from now on
» This is the only requirement for our Lévy process

» Condition (D) always holds when G is discrete:
» Proof 1. G* is compact [Pontryagin—van Kampen duality]
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Remarks
Condition (D): [;.(1 + Re¥(x))™ mg-(dy) < oo

» We will need the linear solution to have a function solution in
order to be able to apply variation of parameters to the
non-linear equation;

» Therefore, (D) is assumed from now on

» This is the only requirement for our Lévy process

» Condition (D) always holds when G is discrete:

» Proof 1. G* is compact [Pontryagin—van Kampen duality]
» DProof 2. X; Y[] always has local times when G is discrete
[elementary computations]
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Remarks
Condition (D): [;.(1 + Re¥(x))™ mg-(dy) < oo

» We will need the linear solution to have a function solution in
order to be able to apply variation of parameters to the
non-linear equation;

» Therefore, (D) is assumed from now on
» This is the only requirement for our Lévy process

» Condition (D) always holds when G is discrete:

» Proof 1. G* is compact [Pontryagin—van Kampen duality]

» Proof 2. X;V, ! always has local times when G is discrete
[elementary computations]

» This is a first example of how the structure of G alone can matter:
When G is discrete the linear SPDE always has a function solution
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Existence and Uniqueness
Oruy(x) = Luy(x) + Ao(uy(x))é(x)

Theorem (K-Kim)

Suppose that o is Lipschitz continuous, and either o(0) = 0 or G is
compact. If, in addition, up € L?(G) is non random, then our SPDE
has a solution that satisfies the following energy inequality for some
c e (0,00):

&WN? = E <I|Ut“%2(g)> < cexpl(ct) for all t > 0.

3d uniqueness among solutions that have an energy inequality.
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Existence and Uniqueness
Oruy(x) = Luy(x) + Ao(uy(x))é(x)

Theorem (K-Kim)

Suppose that o is Lipschitz continuous, and either o(0) = 0 or G is
compact. If, in addition, up € L?(G) is non random, then our SPDE
has a solution that satisfies the following energy inequality for some
c e (0,00):

&WN? = E <I|Ut”%2(o)> < cexpl(ct) for all t > 0.
3d uniqueness among solutions that have an energy inequality.

» When o0(0) = 0, this is essentially due to Dalang and Mueller
(2003)
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Existence and Uniqueness
Oruy(x) = Luy(x) + Ao(uy(x))é(x)

Theorem (K-Kim)

Suppose that o is Lipschitz continuous, and either o(0) = 0 or G is
compact. If, in addition, up € L?(G) is non random, then our SPDE

has a solution that satisfies the following energy inequality for some
c e (0,00):

&WN? = E <“Ut”%2(e)> < cexpl(ct) for all t > 0.
3d uniqueness among solutions that have an energy inequality.
» When o0(0) = 0, this is essentially due to Dalang and Mueller

(2003)
» We are interested in the behavior of &(A) for A > 1
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Existence and Uniqueness
Oruy(x) = Luy(x) + Ao(uy(x))é(x)

Theorem (K-Kim)

Suppose that o is Lipschitz continuous, and either o(0) = 0 or G is
compact. If, in addition, up € L?(G) is non random, then our SPDE
has a solution that satisfies the following energy inequality for some
c e (0,00):

&WN? = E <I|Ut“%2(e)> < cexpl(ct) for all t > 0.

3d uniqueness among solutions that have an energy inequality.

» When o0(0) = 0, this is essentially due to Dalang and Mueller
(2003)

» We are interested in the behavior of &(A) for A > 1
» From now on either G is compact or ¢(0) = 0
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» If G is compact and o is bounded, then &(A) = O(A) Vt > 0
«O>» «Fr «E» «E>» = DA
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» If G is compact and o is bounded, then &(A) = O(A) Yt > 0
fact &) = AVt >0

» If in addition ess inf,cg|ug(z)| > 0 and inf,cr |0(z)| > O, then in
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» If G is compact and o is bounded, then &(A) = O(A) Yt > 0
» If in addition ess inf,cg|ug(z)| > 0 and inf,cr |0(z)| > O, then in
fact &) = AVt >0

» For simplicity let us consider only the case that inf,cgr |0(z)/z] > 0
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Linear noise excitation

Ou(x) = Lulx) + Ao(ue(x)&lx), &A= \/E(“ut”ig(e))

Proposition (K-Kim)

» If G is compact and o is bounded, then &(A) = O(A) Vt > 0

» If in addition ess inf,cg|up(z)| > 0 and inf,cp |0(z)| > O, then in
fact &(A) = AVt >0

» For simplicity let us consider only the case that inf,cp |0(z)/z| > O

» It is known (Foondun-Kh, 2010) that our SPDE is typically
“intermittent”
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Linear noise excitation

Orui(x) = Luslx) + Ao(u(x))é(x), &)= \/E(“ut”iQ(G))

Proposition (K-Kim)

» If G is compact and o is bounded, then &(A) = O(A) Vt > 0

» If in addition ess inf,cg|up(z)| > 0 and inf,cp |0(z)| > O, then in
fact &(A) = AVt >0

» For simplicity let us consider only the case that inf,cp |0(z)/z| > O

» It is known (Foondun-Kh, 2010) that our SPDE is typically
“intermittent”

» Wish to understand the noise excitation of such SPDEs

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 14/ 20
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Under the preceding conditions:
» Suppose that G is discrete. Then,

Aexp {A/XQ} < &) < Bexp {BAQ}

forall A > 1

«4O0> «4Fr «=)r « > = Q>



Non-linear noise excitation
Ou(x) = Lulx) + Ao(ue(x)&lx), &A= \/E(“ut”%Q(G))
Theorem (K-Kim)

Under the preceding conditions:

» Suppose that G is discrete. Then,

Aexp {A)\,Q} < &A) < Bexp ‘[B)\,Q} forall A >1

» Suppose G is connected and: (1) either it is non compact; or (2)
it is compact and metrizable with cardinality > 2 [hence = oa].
Then,

&) > Cexp {cﬁ} for all » > 1
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Non-linear noise excitation
Orui(x) = Luslx) + Ao(u(x))é(x), &)= \/E(“ut”?ﬂ(g))

Theorem (K-Kim)

Under the preceding conditions:

» Suppose that G is discrete. Then,

Aexp {AAQ} < &A) < Bexp ‘{B}LQ} forall A >1

» Suppose G is connected and: (1) either it is non compact; or (2)
it is compact and metrizable with cardinality > 2 [hence = oa].
Then,

&) = Cexp {C)f} for all A > 1

» For every 0 > 4, 3 a model for which log &) = A9
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Non-linear noise excitation
Orui(x) = Luslx) + Ao(u(x))é(x), &)= \/E(“ut”?ﬂ(g))

Theorem (K-Kim)

Under the preceding conditions:

» Suppose that G is discrete. Then,

Aexp {AAQ} < &A) < Bexp ‘{B}LQ} forall A >1

» Suppose G is connected and: (1) either it is non compact; or (2)
it is compact and metrizable with cardinality > 2 [hence = oa].
Then,

&) = Cexp {cx’r} for all A > 1

» For every 0 > 4, 3 a model for which log &(A) = A?
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i Re‘P(x)) mg:(dy) for B >1

» Start with a priori abstract bounds on &;(A) in terms of
This is the max of the S-resolvent density of X; Yt‘1

«0>» «(Fr «Z» «E>» = A



- e

+ f 1
BT RV (X)> mg:(dy) for B >
This is the max of the S-resolvent density of X; Yt‘1

» Start with a priori abstract bounds on &;(A) in terms of
» An upper bound a la Foondun-Kh (2010):

_1 [ const
(5]

«0>» «(Fr «Z» «E>» = Q>

& (A) < const - exp { !




Outline of proof

Oru(x) = Luy(x) + Aoluy(x))&(x), &A= E(“ut”%Q(G))

» Start with a priori abstract bounds on &;(A) in terms of

Y(B) := /G <B—|—Rie\1’(x)> mg+(dy) for 8> 1

This is the max of the B-resolvent density of X; Yt“i
» An upper bound a la Foondun-Kh (2010):

t t
&¢(A) < const - exp {QY* <CO)Lr215 > }

» A lower bound:

&) = cte . $ 1+ i <)f : Y(J'/f>>]

j=1

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014
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duality], and hence

» Since G is discrete, G* is compact [Pontryagin—van Kampen

- | (gt

m) me-(dy)

for B > 1.
B B
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duality], and hence

» Since G is discrete, G* is compact [Pontryagin—van Kampen

- | (gt

1
5 Re\P(X)> me-(dy) = = for g >1.

» Use this formula in the abstract bounds

«0>» «(Fr «Z» «E>» = Q>



Outline of proof: The discrete case
Oru(x) = Luy(x) + Aoluy(x))&(x), &A= E(“UtH%z(GQ

» Since G is discrete, G* is compact [Pontryagin—van Kampen
duality], and hence

1 1
Y(B) = /G* <[3+Re\lf(x)> me+(dy) = B for g > 1.

» Use this formula in the abstract bounds

» The connected case is more interesting because we do not have
formulas for the behavior of Y
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Reduction principle 1: Group invariance
Oru(x) = Luy(x) + Aoluy(x))&(x), &A= E(“ut”%Q(Q)

Theorem (K-Kim)

» If h: G — T is a topological isometry, then vi(x) := us(h~*(x))
solves [in law] the SPDE

Orvi(x) = Zhvi(x) + o(ve(x)) Ct(x), where:

p(h

N>
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Reduction principle 1: Group invariance
Orus(x) = Luylx) + Ao(u(x)&lx), &A= E(“ut”%?((;))

Theorem (K-Kim)

» If h: G — T is a topological isometry, then v¢(x) := us(h~(x))
solves [in law] the SPDE

Orve(x) = Lhve(x) + o(ve(x)) Cilx),  where:

p(h)

» p(h) € (0, 00)
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» If h: G — T is a topological isometry, then v¢(x) := us(h~(x))
solves [in law] the SPDE

Orve(x) = Lhve(x) + o(ve(x)) Cilx),  where:

p(h)

> p(h) € (0, 00)

» ( is space-time white noise on R, x I’
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Reduction principle 1: Group invariance
Oru(x) = Luy(x) + Aoluy(x))&(x), &A= E(“ut”%?((;))

Theorem (K-Kim)

» If h: G — T is a topological isometry, then v¢(x) := us(h~(x))
solves [in law] the SPDE

Orve(x) = Lhve(x) + o(ve(x)) Cilx),  where:

p(h)

> p(h) € (0, 00)
» ( is space-time white noise on R, x I

» %, = the L*(I')-generator of the Lévy process h(X;)
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Reduction principle 1: Group invariance
Oru(x) = Luy(x) + Aoluy(x))&(x), &A= E(“ut”%?((g))

Theorem (K-Kim)

» If h: G — T is a topological isometry, then v¢(x) := us(h~(x))
solves [in law] the SPDE

Orve(x) = Lhve(x) + o(ve(x)) Cilx),  where:

p(h)

v

p(h) € (0, 00)
€ is space-time white noise on R, x I

v

v

% = the L?(I")-generator of the Lévy process h(X;)
» If ' = G and h € Aut(G), then p is the modulus of h
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Reduction principle 2: Projections reduce energy
Our(x) = Luy(x) + Ao(u(x))&(x), E1A) = \/E(llwell?z )

Theorem (K-Kim)
If G=T x K and K is a compact abelian group, then

EqN) = &y, (M), (1)

where v; solves the same SPDE, but on I' with . replaced by the
generator of the projection of X onto I'. Furthermore, v exists [as a
finite-energy solution] when u does
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Reduction principle 2: Projections reduce energy
Orus(x) = Luylx) + Ao(u(x)&lx), &A= E(“”t”%z(g))

Theorem (K-Kim)
If G=T x K and K is a compact abelian group, then
gut ()\') 2 éth ()\'>' (1)

where v; solves the same SPDE, but on I' with . replaced by the
generator of the projection of X onto I'. Furthermore, v exists [as a
finite-energy solution] when u does

» Now apply our reduction principles in structure theory of LCA
groups; compare everything to Br. motion Zf = f” on R
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Reduction principle 2: Projections reduce energy
Our(x) = Luy(x) + Ao(u(x))&(x), E1A) = \/E(llwell?z )

Theorem (K-Kim)
If G=T x K and K is a compact abelian group, then

EqN) = &y, (M), (1)

where v; solves the same SPDE, but on I' with . replaced by the
generator of the projection of X onto I'. Furthermore, v exists [as a
finite-energy solution] when u does

» Now apply our reduction principles in structure theory of LCA
groups; compare everything to Br. motion .Zf = f” on R

» For a-stable processes on R, log &(A) = A*@=1) forall a € (1,2]

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 19/ 20



Two asides:

If u solves doiu = u” + o(u)€ on [0, 1] with u¢(0) = u¢(1) = 0 and nice
L.C, then log &(A) = A* for all A > 1.
... as compared with
«O>» «Fr «E» «E>» = DA
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Back to [0, 1] with Dirichlet O-boundary
conditions

Two asides:
Theorem (Foondun-Joseph, 2014)

If u solves 0iu = u” + o(u)€ on [0, 1] with ut(0) = ut(1) = 0 and nice
L.C, then log &(A) = A* for all A > 1.

. as compared with
Theorem (K-Kim)

If u solves 8?11 = u" + o(u)¢ on R with nice B.C. and 1.C, then
log &(A) = A forall A > 1.
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