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The Stochastic Heat Equation on R

I Consider SHE on R: ξ := space-time white noise;
u̇(t , x) = u′′(t , x) + σ (u(t , x))ξ(t , x) [t > 0, x ∈ R];

I subject to u(0 , x) ∈ L∞(R) non random and ≥ 0;
I σ : R→ R Lipschitz continuous and non random.
I Theorem. (Pardoux, 1974/75; Krylov–Rozovskĭı, 1977; Walsh,1984; . . . ) There exists a unique continuous solution.
I Theorem. (Mueller, 1991) If σ (0) = 0 and u(0 , •) > 0 on a set of

positive measure, then u(t , x) > 0 for all t > 0 and x ∈ R.
I Today we concentrate on 2 special cases only:

I The linear heat equation (LHE): σ (u) = 1 and u(0 , x) = 0;
I The parabolic Anderson model (PAM): σ (u) = u and u(0 , x) = 1.
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I Theorem. (Pardoux, 1974/75; Krylov–Rozovskĭı, 1977; Walsh,1984; . . . ) There exists a unique continuous solution.
I Theorem. (Mueller, 1991) If σ (0) = 0 and u(0 , •) > 0 on a set of

positive measure, then u(t , x) > 0 for all t > 0 and x ∈ R.
I Today we concentrate on 2 special cases only:

I The linear heat equation (LHE): σ (u) = 1 and u(0 , x) = 0;

I The parabolic Anderson model (PAM): σ (u) = u and u(0 , x) = 1.

D. Khoshnevisan (U. Utah) Intermittence & Multifractality October 9-11, 2014 2 / 22



The Stochastic Heat Equation on R

I Consider SHE on R: ξ := space-time white noise;
u̇(t , x) = u′′(t , x) + σ (u(t , x))ξ(t , x) [t > 0, x ∈ R];

I subject to u(0 , x) ∈ L∞(R) non random and ≥ 0;
I σ : R→ R Lipschitz continuous and non random.
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The Stochastic Heat Equation on R
u̇(t , x) = u′′(t , x) + σ (u(t , x))ξ(t , x)

I LHE [σ (u) = λ and u0 = 0] is a GRF and therefore well tempered.

I PAM [σ (u) = λu; u0 = 1] is highly complex; the more exposure to thenoise, the more difficult to predict its behavior in all possible regimes:

I Intermittency (t → ∞). Amir-Corwin-Quastel, 2011;Bertini–Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002,2005; den Hollander-Greven, 2007; Florescu-Viens, 2006;Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-denHollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov,2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova,2008; Molchanov, 1991. . .
I Chaos (x → ±∞). Chen, 2014; Conus-Joseph-K, 2013
I Nonlinear noise excitation (λ → ±∞). Kim-K, 2014
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The Stochastic Heat Equation on [0 , 1]
u̇(t , x) = u′′(t , x) + λσ (u(t , x))ξ(t , x) for (t , x) ∈ (0 ,∞)× [0 , 1] with Dirichlet BC
u(0 , x) = sin(πx)
λ = 0
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The Stochastic Heat Equation on [0 , 1]
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The Stochastic Heat Equation on [0 , 1]
u̇(t , x) = u′′(t , x) + λσ (u(t , x))ξ(t , x) for (t , x) ∈ (0 ,∞)× [0 , 1] with Dirichlet BC
u(0 , x) = sin(πx); σ (u) = u on the left; σ (u) = 1 on the right

λ = 24
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The Stochastic Heat Equation on [0 , 1]
u̇(t , x) = u′′(t , x) + λσ (u(t , x))ξ(t , x) for (t , x) ∈ (0 ,∞)× [0 , 1] with Dirichlet BC
u(0 , x) = sin(πx); σ (u) = u on the left; σ (u) = 1 on the right

λ = 50
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A Related Picture
Solar prominence video http://apod.nasa.gov/apod/ap110307.html
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The Main Results
Ż(t , x) = 12 Z ′′(t , x) + ξ(t , x) [Z(0 , x) = 0]
u̇(t , x) = 12 u′′(t , x) + u(t , x)ξ(t , x) [u(0 , x) := 1]

I Natural to think of h(t , x) = log u(t , x) instead [H-C soln to KPZ].

I Define for all c, t > 0, [Conus-K-Joseph, 2013; Xia Chen, 2014]
LZ

c (t) := {x ≥ 10 : Z(t , x) ≥ ct1/4[log x]1/2}
Lu

c (t) := {x ≥ 10 : log u(t , x) ≥ ct1/3[log x]2/3} .
I Both are large-scale “multifractals”; only u is “intermittent”:
I Theorem (K-Kim-Xiao, 2014+). With probability one,

DimH LZ
c (t) = 1− √π2 c2 DimH Lu

c (t) = 1− 4√23 c3/2 a.s.,

where DimH A < 0 means A is bounded.
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Ż(t , x) = 12 Z ′′(t , x) + ξ(t , x) [Z(0 , x) = 0]
u̇(t , x) = 12 u′′(t , x) + u(t , x)ξ(t , x) [u(0 , x) := 1]

I Natural to think of h(t , x) = log u(t , x) instead [H-C soln to KPZ].
I Define for all c, t > 0, [Conus-K-Joseph, 2013; Xia Chen, 2014]

LZ
c (t) := {x ≥ 10 : Z(t , x) ≥ ct1/4[log x]1/2}
Lu

c (t) := {x ≥ 10 : log u(t , x) ≥ ct1/3[log x]2/3} .
I Both are large-scale “multifractals”; only u is “intermittent”:
I Theorem (K-Kim-Xiao, 2014+). With probability one,

DimH LZ
c (t) = 1− √π2 c2

DimH Lu
c (t) = 1− 4√23 c3/2 a.s.,

where DimH A < 0 means A is bounded.

D. Khoshnevisan (U. Utah) Intermittence & Multifractality October 9-11, 2014 11 / 22



The Main Results
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Large-Scale Hausdorff Dimension

I We need to have a notion [analogous to Hausdorff dimension]that is useful for measuring the size of large [possibly discrete]sets in Rd

I First successful attempt in this direction made by Naudts (1988)
I Naudts’ notion of dimension is slightly faulty though (∃A,B suchthat A ⊂ B and yet dimNaudts A > dimNaudts B)
I A much better notion was introduced by Barlow and Taylor(1988, 1989)
I To simplify the exposition I will only talk about large-scalefractals in [0 ,∞) today.
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Large-Scale Hausdorff Dimension

I Suppose A ⊂ [0 ,∞) is a set

I Given a real number ρ > 0 and an integer n ≥ 0, define
ν(ρ)

n (A) := inf∑
i

( ri
en

)ρ
,

where the inf is taken over all intervals of the form [xi , xi + ri)such that:

I
⋃

i≥1[xi , xi + ri) ⊃ A ∩ [en, en+1)
I ri ≥ 1 for all i ≥ 1

I Now define the large-scale Hausdorff dimension of A as
DimH A := inf {ρ > 0 : ∞∑

n=0 ν
(ρ)
n (A) < ∞} .
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Simple Facts About Large-Scale Hausdorff
Dimension
ν(ρ)

n (A) := inf{∑i(ri/en)ρ : ∃{xj} s.t. ∪i≥1 [xi, xi + ri) ⊃ A ∩ [en , en+1)}DimH A := inf{ρ > 0 : ∑n ν
(ρ)
n (A) < ∞}

I If A is bounded, then DimH A = 0 (inf ∅ :=∞)

I The converse is not true
I Consider for example A := {0 , e , e2 , e3 , · · · }

I If A ⊂ B then DimH A ≤ DimH B
I 0 ≤ DimH A ≤ 1 for all A ⊂ [0 ,∞)

I Proof. Enough to consider A = [0 ,∞)

I Cover A ∩ [en, en+1) with intervals [xi , xi + ri) where ri = en/2
I We need ≤ cen/2 such intervals to cover A ∩ [en, en+1)
I ν(ρ)

n (A) ≤∑i≤cen/2 (en/2/en)ρ

≤ ce−n(ρ−1)/2
I Therefore, DimH A ≤ ρ for all ρ > 1.

I QED

I Lemma (Barlow-Taylor, 1989). In the definition of DimH , we can
replace “en” by cn for any c > 1
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Methods for Estimating DimH
ν(ρ)

n (A) := inf{∑i(ri/en)ρ : ∃{xj} s.t. ∪i≥1 [xi, xi + ri) ⊃ A ∩ [en , en+1)}DimH A := inf{ρ > 0 : ∑n ν
(ρ)
n (A) < ∞}

I For upper bound, find a “good cover.” Lower bound is harder

I Frostman’s Lemma (Barlow-Taylor, 1989). Let µ denote a finite
non-void measure on A ∩ [en , en+1) and suppose

K := sup
x≥0,r≥1:[x, x+r]⊂[en, en+1)

µ[x, x + r]
rρ < ∞.

Then, ν(ρ)
n (A) ≥ K−1e−nρµ(A).

I Corollary. DimH N = DimH [0 ,∞) = 1.

I Proof. Take µ to be the counting measure, restricted to [en , en+1)
I µ[x, x + r] � r Ñ K ≤ c exp{n(1− ρ)} if ρ < 1
I µ(N) � exp(n)
I ∴ infn≥1 ν(ρ)

n (A) > 0 if ρ < 1 Ñ DimH N ≥ ρ for all ρ < 1.
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non-void measure on A ∩ [en , en+1) and suppose

K := sup
x≥0,r≥1:[x, x+r]⊂[en, en+1)

µ[x, x + r]
rρ < ∞.

Then, ν(ρ)
n (A) ≥ K−1e−nρµ(A).

I Corollary. DimH N = DimH [0 ,∞) = 1.

I Proof. Take µ to be the counting measure, restricted to [en , en+1)
I µ[x, x + r] � r Ñ K ≤ c exp{n(1− ρ)} if ρ < 1
I µ(N) � exp(n)
I ∴ infn≥1 ν(ρ)

n (A) > 0 if ρ < 1 Ñ DimH N ≥ ρ for all ρ < 1.
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n (A) := inf{∑i(ri/en)ρ : ∃{xj} s.t. ∪i≥1 [xi, xi + ri) ⊃ A ∩ [en , en+1)}DimH A := inf{ρ > 0 : ∑n ν
(ρ)
n (A) < ∞}

I Here is another interesting method for obtaining a lower bound

I Recall that the upper asymptotic density of A ⊂ [0 ,∞) withrespect to measure µ is defined as Dµ(A) := lim
n→∞

n−1µ(A ∩ [0 , n]).
I Lemma (K-Kim-Xiao, 2014+). If ∃ measure µ on A s.t.
Dµ(A) > 0, and µ[x , x + r] ≤ qr, then DimH A = 1.

I Proof. Clearly,
µ[cn, cn+1) ≥ (

o(1) +Dµ(A)) cn+1 − qcn

= (
o(1) + cDµ(A)− q

)
cn.

I Choose and fix c > q/Dµ(A), and then apply Frostman’slemma.
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Related Facts

I Theorem (Barlow-Taylor, 1989). If {S(n)}∞n=0 denotes the simplerandom walk on Zd and d ≥ 3, then DimH S(N) = 2 a.s.

I Theorem (Barlow-Taylor, 1989). If {B(t)}t≥0 denotes Brownianmotion on Rd and d ≥ 3, then DimH B(R+) = 2 a.s.
I Barlow and Taylor have asked if one can compute explicitlyDimH S(N) for a general transient random walk on Zd . [Theanswer is “yes”; Georgiou-K-Kim-Ramos 2014+]
I Remainder of today: Formulas for DimH A where A is anon-trivial random set that is simpler to analyze than those inthe SPDE examples earlier
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Law of the Iterated Logarithm
B := 1-D Brownian motion, c > 0

I Consider the random set LB
c := {t ≥ 8 : B(t) > c

√2t log log t
}
.

I Theorem (Khintchine, 1924). If c > 1, then LB
c is a.s. bounded. If

c < 1, then LB
c is a.s. unbounded. Equivalently,

lim sup
t→∞

B(t)√2t log log t
= 1 a.s.

I Theorem (Lévy, 1937). LB1 is a.s. unbounded.
I Theorem (Essentially due to Strassen, 1964). Let µ := Leb. meas.

Then, for all c ∈ (0 , 1], a.s.,

Dµ(LB
c ) = 1− exp{−4 [ 1

c2 − 1]} .
I Therefore DimH LB

c = {0 if c > 1,1 if c < 1. What about LB1 ?
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Law of the Iterated Logarithm
LB

c := {t ≥ 8 : B(t) > c
√2t log log t}

I Proposition (K-Kim-Xiao, 2014+). DimH LB1 = 1 a.s.

I Outline of proof. Let µ(G) := ∣∣{t ∈ G : B(t) ≥ √2t log log t
}∣∣ .

I By the Tonelli theorem,
Eµ(en, en+1) = ∫ exp(n+1)

exp(n) P{B(t) ≥√2t log log t
}

dt

�
∫ exp(n+1)

exp(n)
dtlog t
√log log t

� en

n
√log n

.

I It turns out that µ(en, en+1) � enn−1(log n)−1/2 “for most n’s.” Also,
µ[x , x + r) ≤ r.

I Apply Frostman to see that ν(1)
n (LB1 ) ≥ cn−1(log n)−1/2 for most n’s, a.s.Since ∑n n−1(log n)−1/2 =∞, we obtain the result.
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exp(n)
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I It turns out that µ(en, en+1) � enn−1(log n)−1/2 “for most n’s.” Also,
µ[x , x + r) ≤ r.

I Apply Frostman to see that ν(1)
n (LB1 ) ≥ cn−1(log n)−1/2 for most n’s, a.s.Since ∑n n−1(log n)−1/2 =∞, we obtain the result.
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Law of the Iterated Logarithm (re-iterated)

I Let Xs := e−s/2B(es)

I X is a mean-zero Gaussian diffusion with Cov(Xs , Xt ) = e−|t−s|/2
I We can re-write the LIL times as follows:

LB
c := {

t ≥ 100 : B(t) > c
√2t log log t

}

= log{es ≥ 100 : B(es) > c
√2es log s

}
= log{u ≥ log(100) : Xu > c

√2 log u
}

:= logLX
c .

I We know: LX
c is unbounded iff c ≤ 1

I Theorem (K-Kim-Xiao, 2014+). DimH LX
c = 1− c2 a.s. for all c ∈ (0 , 1].
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Law of the Iterated Logarithm (re-iterated)

I To recap: If X := the O-U process and c ∈ (0 , 1], then
DimH

{
t ≥ 38 : Xt ≥ c

√2 log t
} = 1− c2 a.s.

I The preceding shows that the tall peaks of the Ornstein–Uhlenbeckprocess undergo a “separation of scales” [The peak times form alarge-scale “multifractal”]
I It is predicted that the solution to a large family of stochastic PDEsshould also exhibit separation of scales; we have presented this in twodisparate cases [universality classes]
I The proof consists of two bounds, of course:

I The upper bound requires a covering argument
I The lower bound is slightly different from the precedinglower-bound methods . . .
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Law of the Iterated Logarithm (re-iterated)

I Recall Xt = e−t/2B(et ) and LX
c := {t ≥ 65 : Xt ≥ c

√2 log t}

I Goal: DimH LX
c ≥ 1− c2

I It suffices to consider only the case c < 1
I Choose and fix an arbitrary ρ ∈ (c2 , 1), and subdivide every nth shell[en, en+1) in to equally-spaced disjoint intervals of length enρ ; you willneed � exp{n(1− ρ)} such subintervals
I One can show that a.s. for all n large, LX

c will a.s. intersect all of thosesubintervals for all n large
I Therefore a.s. LX

c contains a set of � exp{n(1− ρ)} many points withpairwise distance ≥ exp{nρ}
I One can show that such a [≈ self-similar] set will have dimension
≥ 1− ρ; therefore, DimH LX

c ≥ 1− ρ for all ρ ∈ (c2 , 1).
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