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Macroscopic Minkowski Dimension

» If AC[0,00)is a set, then define

No(A):= [{2" <j <2 Anj,j+1) + @}
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Macroscopic Minkowski Dimension

» If AC [0, 0) is a set, then define
Na(A):=|{2" <j< 2" Anj,j+1) + o}].

» The macroscopic Minkowski dimension of A (e.g.,
Barlow-Taylor, 1989) is

Dim,, (A) := lim sup% log, (N,(A) V 1).

n—oo
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Macroscopic Minkowski Dimension

» If AC [0, 0) is a set, then define
No(A):=[{2" < j< 2™ Anj,j+1) + @}

» The macroscopic Minkowski dimension of A (e.g.,
Barlow-Taylor, 1989) is

Dim,,(A) := limsup £ log, (N,(A) v 1).

n—oo

» Example. Dim,,(Primes) = Dim,,(N) = Dim(R,) = 1.
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Macroscopic Minkowski Dimension

» If AC [0, 0) is a set, then define
No(A):=[{2" < j< 2™ Anj,j+1) + @}

» The macroscopic Minkowski dimension of A (e.g.,
Barlow-Taylor, 1989) is

Dim,,(A) := lim sup% log, (NL(A) V 1).

n—oo

» Example. Dim(Primes) = Dim,(N) = Dim,,(R ;) = 1.
» Example. Let f(k):= kP for k € N, where p > 1. Then,

Dim,, (f(N)) = Dim,, (Uiio{kp}) = Pilo

Reason. N,({kP}32,) = 2(n+Lip —2n/p — 2nlp,
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Macroscopic Minkowski Dimension

» If AC [0, 0) is a set, then define
No(A):=[{2" < j< 2™ Anj,j+1) + @}

» The macroscopic Minkowski dimension of A (e.g.,
Barlow-Taylor, 1989) is

Dim,,(A) := lim sup% log, (NL(A) V 1).

n—oo

» Example. Dim(Primes) = Dim,(N) = Dim,,(R ;) = 1.
» Example. Let f(k):= kP for k € N, where p > 1. Then,

Dim,, (f(N)) = Dim,, ( 20=0{kp}> = Pil-

Reason. N,({kP )5 ) = 2+l _nlp — onip,
» Example. Dim,, (f(N)) = 1 if f(k) = kP for k e Nand 0 < p < 1.
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:
» d > 3= Z is bounded by transience, and hence Dim (Z) = 0 as.
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim(Z) = 0 as.
» d = 2= Z is unbounded. However,

E<]N,, ><klz ST PXU) =0V =1,....k)

2n<jy <2t
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

E<[N,,(Z)]k>§k! ST PXU) =0We=1,....k)

2n£jl§m§jk<2n+1
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

<[N ><kl Z S PIX(Gy) =0ve=1,..., k)

20 <y <o <2n

< Cfk! Z > !

on St <jian il = 1) Uk = Jk-1)
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» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

<[N ><kl Z S PIX(Gy) =0ve=1,..., k)

2n<jy <2t

< Cfk! Z > 1_ —— < Ckkink.

oy jpant il = 1) Uk = Jk-1)

— sup,,1 Eexp(cNn(Z)/n) < coVe < G
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

<[N ><kl Z S PIX(Gy) =0ve=1,..., k)

2n<jy <2t

< Cfk! Z > 1_ —— < Ckkink.

oy jpant il = 1) Uk = Jk-1)

= sup,>1 Eexp(cNy(Z)/n) < coVe < G =Y, P {Ny(Z) > 2] <
oo Ve > 0. In particular, Dim,,(Z) = 0 as.
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)

» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

<[N ><kl Z S PIX(Gy) =0ve=1,..., k)

2n<jy <2t

< Cfk! Z > 1_ —— < Ckkink.

oy jpant il = 1) Uk = Jk-1)

= sup,>1 Eexp(cNy(Z)/n) < coVe < G =Y, P {Ny(Z) > 2] <
oo Ve > 0. In particular, Dim,,(Z) = 0 as.
» If d = 1, then Dim,(Z) = Y2 as. Indeed,
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» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)
» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

<]N ><kl Z S PIX(Gy) =0ve=1,..., k)

2n<jy <2t

< Cfk! Z > 1_ —— < Ckkink.

oy jpant il = 1) Uk = Jk-1)

= sup,>1 Eexp(cNy(Z)/n) < coVe < G =Y, P {Ny(Z) > 2] <
oo Ve > 0. In particular, Dim,,(Z) = 0 as.
» If d = 1, then Dim(Z) = 12 as. Indeed,

limsup,,_,., Na(Z)/\/2"+1log,(n) = 1 as. [Kesten, 1965]
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Macroscopic Minkowski Dimension
Ny(A) = |{2" < j <2t An[j,j+1) + @}]; Dim(A) = limsup,_, n*log,(N,(A) V1)
» Example. Let Z:= {n > 0: X(n) = 0} where X := the simple
walk on Z9. Then:

» d > 3= Z is bounded by transience, and hence Dim,(Z) = 0 as.
» d = 2= Z is unbounded. However,

<[N ><kl Z S PIX(Gy) =0ve=1,..., k)

2n<jy <2t

< Cfk! Z > 1_ —— < Ckkink.

oy jpant il = 1) Uk = Jk-1)

= sup,>1 Eexp(cNy(Z)/n) < coVe < G =Y, P {Ny(Z) > 2] <
oo Ve > 0. In particular, Dim,,(Z) = 0 as.
» If d = 1, then Dim(Z) = 12 as. Indeed,

limsup,,_,., Na(Z)/\/2"+1log,(n) = 1 as. [Kesten, 1965]
» The same for Z := B71({0}) for B := a BM(RR).
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Macroscopic Minkowski Dimension

» There are natural ways to extend Dim,,(A) for cases where
A C RY, where d > 1. Here is one:

Dim,,(A) := lim sup% log, <]A<pix) NVYpl Vv 1> ,

n—oo

where 4, := [-2",2")9 and AP .= [x € 29 : dist(x, A) < 1}.
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Macroscopic Minkowski Dimension

» There are natural ways to extend Dim,,(A) for cases where
A C R where d > 1. Here is one:

Dim,,(A) := lim sup,—11 log, ([A(pix) NVYpl Vv 1> ,
where 4, := [-2",2"9 and AP = [x ¢ 79 : dist(x,A) < 1].

» There is also a [more complicated] notion of macroscopic
Hausdorff dimension (Barlow-Taylor, 1989; 1992. Naudts, 1988),
denoted by Dim,,, which I will not define, in order to keep the
exposition relatively simple. Fact. 0 < Dim,(A) < Dim,,(A) < d.
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Macroscopic Minkowski Dimension
» There are natural ways to extend Dim,,(A) for cases where
A C RY, where d > 1. Here is one:

Dim,,(A) := lim sup% log, <[A<pix) NVYpl Vv 1> ,

n—oo

where 4, := [-2",2"9 and AP = [x ¢ 79 : dist(x,A) < 1].
» There is also a [more complicated] notion of macroscopic

Hausdorff dimension (Barlow-Taylor, 1989; 1992. Naudts, 1988),

denoted by Dim,,, which I will not define, in order to keep the
exposition relatively simple. Fact. 0 < Dim,(A) < Dim,,(A) < d.
» Example. Dim,,(Z9) = Dim,,(N9) = Dim,,(R9) = d.
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Macroscopic Minkowski Dimension

» There are natural ways to extend Dim,,(A) for cases where
A C RY, where d > 1. Here is one:

Dim,,(A) := lim sup% log, <[A<pix) NVYpl Vv 1> ,
where 4, := [-2",2"9 and AP = [x ¢ 79 : dist(x,A) < 1].

» There is also a [more complicated] notion of macroscopic
Hausdorff dimension (Barlow-Taylor, 1989; 1992. Naudts, 1988),
denoted by Dim,,, which I will not define, in order to keep the
exposition relatively simple. Fact. 0 < Dim,(A) < Dim,,(A) < d.

» Example. Dim,,(Z?) = Dim,,(N9) = Dim,,(R9) = d.

» The main result of [Barlow-Taylor, 1992] is the fact that if d > 2
and X denotes a non-degenerate transient random walk on Z9
that is “stable-like” with index 0 < a < 2, then
Dim,,(range of X) = Dim,(range of X) = a a.s. The precise
statement follows.
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Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let X := a transient walk on Z9 s.t. 3a € (0, 2] with

glx)i= S PiX(n) = x} = x|~ for x| > 1.
n=0

Then, Dim,,(X(N)) = Dim,(X(N)) = a a.s.
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Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let X := a transient walk on Z9 s.t. 3a € (0, 2] with

glx):= > "P{X(n) = x} = x| """ for x| » 1.
n=0

Then, Dim,,(X(N)) = Dim,(X(N)) = a a.s.

» The same where X := SaS(RY), transient
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Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let X := a transient walk on Z9 s.t. 3a € (0, 2] with

glx):= Y P{X(n) = x} = x| 4" for x| > L.
n=0

Then, Dim,,(X(N)) = Dim,(X(N)) = a a.s.

» The same where X := SaS(R9), transient

» Barlow and Taylor (1992) ask for an index/formula for

Dim,,(X(N)) for a general transient walk [and implicitly also for
Dim,, (X(N))].
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Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let X := a transient walk on Z9 s.t. 3a € (0, 2] with

glx):= > "P{X(n) = x} = x| """ for x| » 1.
n=0

Then, Dim,,(X(N)) = Dim,(X(N)) = a a.s.

» The same where X := SaS(R9), transient

» Barlow and Taylor (1992) ask for an index/formula for
Dim, (X(N)) for a general transient walk [and implicitly also for
Dim, (X(N))].

» The formula for Dim, (X(N)) is very complicated
[Georgiou—K-Kim-Ramos, 2015]. I will point out only the
formula for Dim,,(X(N)) for politeness’ sake [ibid.].

D. Khoshnevisan (U. Utah) Macroscopic Dimension June 8-12, 2015 5/19



Macroscopic Minkowski Dimension

Theorem (Georgiou-K-Kim-Ramos, 2015)

Let X := transient walk on Z9 with Green function
glx) =312 o P{X(n) = x}. Then,

Dim,, (X(N)) = infyy € (0,d): gx)

— < 00 a.s.
X
xezd\ [0}
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Macroscopic Minkowski Dimension

Theorem (Georgiou-K-Kim-Ramos, 2015)

Let X := transient walk on Z9 with Green function
glx):=Y 1" oP{X(n) = x}. Then,

Dim,,(X(N)) =inf4 7 €(0,d): Z glx)

— < 00 a.s.
) x|

» If g(x) = || x| "9~ then we recover the theorem of Barlow and
Taylor
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Macroscopic Minkowski Dimension

Theorem (Georgiou-K-Kim-Ramos, 2015)

Let X := transient walk on Z9 with Green function
glx):=Y 1" oP{X(n) = x}. Then,

Dim,,(X(N)) =inf4 7 €(0,d): Z m < 00 as.
x€Z9\{0}

» If g(x) = ||x]| "9~ then we recover the theorem of Barlow and
Taylor

» There is a formula also for Dim (X(N))
but it is very complicated, and so I omit it.
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Macroscopic Minkowski Dimension
Some Open Problems

» Let X := a transient Lévy process on RY, char. exponent V. Is
there an explicit formula for Dim,,(X(R.)) in terms of ¥?
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Macroscopic Minkowski Dimension
Some Open Problems

» Let X := a transient Lévy process on RY, char. exponent V. Is
there an explicit formula for Dim,,(X(R.)) in terms of ¥?

» There are parallels with the microscopic theory. If one takes
them seriously then there are related problems for “additive
random walks.” Almost all are open
For instance, let X!, ..., X" be N independent walks on Z? and
define

X(R) = XYn) + -+ XN(ny) v eNV
Suppose the green’s function of X' satisfies g'(x) = ||x| =9~ for
all1 <7< Nand |x]| > 1L
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Macroscopic Minkowski Dimension
Some Open Problems

» Let X := a transient Lévy process on RY, char. exponent V. Is
there an explicit formula for Dim,,(X(R.)) in terms of ¥?

» There are parallels with the microscopic theory. If one takes
them seriously then there are related problems for “additive
random walks.” Almost all are open
For instance, let X%, ..., X" be N independent walks on Z¢ and
define

X(R) = XYn) + -+ XNny) v eNV
Suppose the green’s function of X' satisfies g'(x) = ||x| =9~ for
all 1 </ < Nand |x]| > 1L

Conjecture (Georgiou—-K—Kim—Ramos, 2015). A C Z¢

nonrandom:
1. If Dim,(A) > d — aN then X(NV) N A is a.s. unbounded;
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Macroscopic Minkowski Dimension

Some Open Problems

» Let X := a transient Lévy process on RY, char. exponent V. Is
there an explicit formula for Dim,,(X(R.)) in terms of ¥?

» There are parallels with the microscopic theory. If one takes
them seriously then there are related problems for “additive
random walks.” Almost all are open
For instance, let X%, ..., X" be N independent walks on Z¢ and
define

X(R) = XYn) + -+ XNny) v eNV
Suppose the green’s function of X' satisfies g'(x) = ||x| =9~ for
all 1 </ < Nand |x]| > 1L

Conjecture (Georgiou—-K—Kim—Ramos, 2015). A C Z¢
nonrandom:
1. If Dim,(A) > d — aN then X(NV) N A is a.s. unbounded;
2. If Dim,(A) < d — aN then X(NV) N A is a.s. bounded.
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Macroscopic Minkowski Dimension
Some Open Problems

» Let X := a transient Lévy process on RY, char. exponent V. Is
there an explicit formula for Dim,,(X(R.)) in terms of ¥?

» There are parallels with the microscopic theory. If one takes
them seriously then there are related problems for “additive
random walks.” Almost all are open
For instance, let X%, ..., X" be N independent walks on Z¢ and
define

X(R) = XYn) + -+ XNny) v eNV
Suppose the green’s function of X' satisfies g'(x) = ||x| =9~ for
all 1 </ < Nand |x]| > 1L

Conjecture (Georgiou—-K—Kim—Ramos, 2015). A C Z¢
nonrandom:
1. If Dim,(A) > d — aN then X(NV) N A is a.s. unbounded;
2. If Dim,(A) < d — aN then X(NV)n A is a.s. bounded.

» A positive resolution has many consequences.
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Law of the Iterated Logarithm

B := 1-D Brownian motion, ¢ > 0

» Consider the random set £5 := {t > 8: B(t) > c\/2tloglog t} .
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Law of the Iterated Logarithm

B := 1-D Brownian motion, ¢ > 0

» Consider the random set £5 := {t > 8: B(t) > c\/2tloglog t} .

» Theorem (Khintchine, 1924). If ¢ > 1, then £2 is a.s. bounded. If
c < 1, then £8 is a.s. unbounded. Equivalently,

: B(t)
lim sup

t—co /2t loglogt

=1 as.
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Law of the Iterated Logarithm

B := 1-D Brownian motion, ¢ > 0
» Consider the random set £5 := {t > 8: B(t) > c\/2tloglog t} .

» Theorem (Khintchine, 1924). If ¢ > 1, then £2 is a.s. bounded. If
c < 1, then £ is a.s. unbounded. Equivalently,

: B(t)
lim sup

t—co /2t loglogt

» Theorem (Lévy, 1937). ;815 is a.s. unbounded.
» Theorem (Essentially due to Strassen, 1964). Vc € (0,1],

=1 as

1
Upper density (£58) = 1 — exp { —4 [c2 - 1} } as.
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Law of the Iterated Logarithm

B := 1-D Brownian motion, ¢ > 0
» Consider the random set £5 := {t > 8: B(t) > c\/2tloglog t} .

» Theorem (Khintchine, 1924). If ¢ > 1, then £2 is a.s. bounded. If
c < 1, then £ is a.s. unbounded. Equivalently,

. B(t)
lim sup

t—co /2t loglogt

» Theorem (Lévy, 1937). ;615 is a.s. unbounded.
» Theorem (Essentially due to Strassen, 1964). Vc € (0,1],

I as

=1 as

1
Upper density (£5) = 1 — exp { —4 [CZ -1

0 ifc>1,

What about £89
1 ife<l.

> = DimH;’M ch = {
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Law of the Iterated Logarithm
£B:= [t >8: B(t) > c\/2tloglog t}

» Proposition (K-Kim-Xiao, 2015). Dim,,,, £8 =1 a.s.
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Law of the Iterated Logarithm
£B:= [t >8: B(t) > c\/2tloglog t}

» Proposition (K-Kim-Xiao, 2015). Dim,,,, £8 =1 as.
» Strategy of proof. Let u(G) := Ht € G: B(t) > +/2tloglog tH .
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Ep(27, 241 — / p {B(t) > \/2tloglog t} dt

n
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£B:= [t >8: B(t) > c\/2tloglog t}

» Proposition (K-Kim-Xiao, 2015). Dim,,,, £8 =1 as.

» Strategy of proof. Let u(G) := Ht € G: B(t) > /2tloglog tH .

» By the Tonelli theorem,

2n+1
Ep(2", 21 = / p{B(t)z 2t|og|ogt}dt

2n+1

dt

B /n log t+/log log t
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Law of the Iterated Logarithm
£B:= [t >8: B(t) > c\/2tloglog t}

» Proposition (K-Kim-Xiao, 2015). Dim,,,, £8 =1 as.

» Strategy of proof. Let u(G) := Ht € G: B(t) > /2tloglog tH .

» By the Tonelli theorem,

2n+1
Ep(2", 21 = / p{B(t)z 2t|og|ogt}dt

2n+1

dt 2n

B /n Iogt\/loglogtxn\/logn.

» It turns out that p(27, 2"*1) = 2"n~(log n)~1/2 “for most n's.”
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Law of the Iterated Logarithm
£B:= [t >8: B(t) > c\/2tloglog t}

» Proposition (K-Kim-Xiao, 2015). Dim,,,, £8 =1 as.
» Strategy of proof. Let u(G) := Ht € G: B(t) > /2tloglog tH .

» By the Tonelli theorem,
2n+1
Ep(2", 21 = / p{B(t)z 2t|og|ogt}dt
2n+1

dt 2n

B /n Iogt\/loglogtxn\/logn.

v

It turns out that p(2", 2"*1) = 2"n~(log n)~1/2 “for most n's.”
Use Y, n~1(log n)~12 = o0 and the def® of Dim,, ©. O

v
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Law of the Iterated Logarithm (re-iterated)

» Let X, 1= e *2B(e%).
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Law of the Iterated Logarithm (re-iterated)

» Let X, := e 512B(e”).
» X is a mean—zero Gaussian diffusion with Cov(Xs, X;) = e 1t=51/2,
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Law of the Iterated Logarithm (re-iterated)

» Let X, := e 512B(e”).
» X is a mean-zero Gaussian diffusion with Cov(Xs, X;) = e~ 1t=5/2,

» We can re-write the LIL times as follows:

£ = {t2100: B(t) > ¢ 2t|og|ogt}
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Law of the Iterated Logarithm (re-iterated)

» Let X, := e 52B(e%).
» X is a mean-—zero Gaussian diffusion with Cov(Xs, X;) = e 1t=51/2,

» We can re-write the LIL times as follows:
rE . {tZlOO: B(t) > ¢ 2t|og|ogt}

(o
log {u > log(100) : X, > c\/2log u}
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Law of the Iterated Logarithm (re-iterated)

» Let X, := e 52B(e%).
» X is a mean-—zero Gaussian diffusion with Cov(Xs, X;) = e 1t=51/2,

» We can re-write the LIL times as follows:

£ = {tZlOO: B(t) > ¢ 2t|og|ogt}
= log {u > log(100) : X, > c\/2log u}
= log £¥.

v

We know: £ is unbounded iff ¢ < 1.
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Law of the Iterated Logarithm (re-iterated)

» Let X, := e 52B(e%).
» X is a mean-—zero Gaussian diffusion with Cov(Xs, X;) = e 1t=51/2,

» We can re-write the LIL times as follows:

£ = {tZlOO: B(t) > ¢ 2t|og|ogt}
- Iog{ > log(100) : X, >c\/2|ogu}
— log£X.

v

We know: £ is unbounded iff ¢ < 1.

Theorem (K-Kim-Xiao, 2015). Dim,,, £X =1 - ¢? a.s. for all
e (0,1].

v

D. Khoshnevisan (U. Utah) Macroscopic Dimension June 8-12, 2015 10 /19



Law of the Iterated Logarithm (re-iterated)

» To recap: If X := the O-U process and ¢ € (0, 1], then

Dim,y,, {¢238: X; = c\/2logt] ~1-¢* as.
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Law of the Iterated Logarithm (re-iterated)

» To recap: If X := the O-U process and c € (0, 1], then
Dim,,, {t >38: X, > ¢ 2|ogt} ~1-¢ as.
» The preceding shows that the tall peaks of the

Ornstein—Uhlenbeck process undergo a “separation of scales”
[The peak times form a large-scale “multifractal’].

D. Khoshnevisan (U. Utah) Macroscopic Dimension June 8-12, 2015 11/19



Law of the Iterated Logarithm (re-iterated)

» To recap: If X := the O-U process and c € (0, 1], then

Di H/M{t>38 Xe > c 2|ogt}=1—62 as.

» The preceding shows that the tall peaks of the
Ornstein—Uhlenbeck process undergo a “separation of scales”
[The peak times form a large-scale “multifractal”].

» [t is predicted that the solution to a large family of stochastic
PDEs should also exhibit separation of scales; we have presented
this in two disparate cases [universality classes].
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Ornstein—Uhlenbeck process undergo a “separation of scales”
[The peak times form a large-scale “multifractal”].

» [t is predicted that the solution to a large family of stochastic
PDEs should also exhibit separation of scales; we have presented
this in two disparate cases [universality classes].

» The proof of the OU result consists of two bounds:
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» To recap: If X := the O-U process and c € (0, 1], then

Dim,,, {238 X = c/2logt| =1-¢® as

» The preceding shows that the tall peaks of the
Ornstein—Uhlenbeck process undergo a “separation of scales”
[The peak times form a large-scale “multifractal”].

» [t is predicted that the solution to a large family of stochastic
PDEs should also exhibit separation of scales; we have presented
this in two disparate cases [universality classes].

» The proof of the OU result consists of two bounds:

» The upper bound requires a covering argument.
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Law of the Iterated Logarithm (re-iterated)

» To recap: If X := the O-U process and c € (0, 1], then

Dim,,, {238 X = c/2logt| =1-¢® as

» The preceding shows that the tall peaks of the
Ornstein—Uhlenbeck process undergo a “separation of scales”
[The peak times form a large-scale “multifractal”].

» [t is predicted that the solution to a large family of stochastic
PDEs should also exhibit separation of scales; we have presented
this in two disparate cases [universality classes].

» The proof of the OU result consists of two bounds:

» The upper bound requires a covering argument.
» The lower bound is slightly different from “standard” lower-bound
methods ... .

D. Khoshnevisan (U. Utah) Macroscopic Dimension June 8-12, 2015 11/19



Law of the Iterated Logarithm (re-iterated)

» Recall X; = e"?2B(ef) and £X := {t > 65: X, > c\/2log t}.
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Law of the Iterated Logarithm (re-iterated)

» Recall X; = e *?B(e?) and LX := {t > 65: X; > c\/2logt].
» Goal: Dim, £X > 1 -2
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Law of the Iterated Logarithm (re-iterated)

» Recall X; = e *?B(e?) and LX := {t > 65: X; > c\/2logt].
» Goal: Dim, £X > 1 -2

» [t suffices to consider only the case ¢ < 1.
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Law of the Iterated Logarithm (re-iterated)

v

Recall X; = e t2B(et) and £X := {t > 65: X, > c\/2logt].
Goal: Dim, £X >1—¢?

It suffices to consider only the case ¢ < 1.

v

v

» Choose and fix an arbitrary p € (c?,1), and subdivide every nth shell
[27, 2"*1) in to equally-spaced disjoint intervals of length 2™; you will
need = 2”10} such subintervals.
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Law of the Iterated Logarithm (re-iterated)

» Recall X; = e"?2B(ef) and X := {t > 65: X, > c\/2log t}.
» Goal: Dim,, £X > 1 -2
» It suffices to consider only the case ¢ < 1.

» Choose and fix an arbitrary p € (c?,1), and subdivide every nth shell
[27, 2"*1) in to equally-spaced disjoint intervals of length 2™; you will
need = 2"1-°) such subintervals.

» One can show that a.s. for all n large, ;Ef will a.s. intersect all of those
subintervals for all n large.
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» Recall X; = e *?B(e?) and LX := {t > 65: X; > c\/2logt].
» Goal: Dim, ;Efff >1-—c%
» It suffices to consider only the case ¢ < 1.

» Choose and fix an arbitrary p € (c?,1), and subdivide every nth shell
[27, 2"*1) in to equally-spaced disjoint intervals of length 2™; you will
need = 2"1-°) such subintervals.

» One can show that a.s. for all n large, ;ﬁf will a.s. intersect all of those
subintervals for all n large.

» Therefore, Dim, £X > 1 —p forall p € (c?,1).
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Law of the Iterated Logarithm (re-iterated)

» Recall X; = e *?B(e?) and LX := {t > 65: X; > c\/2logt].
» Goal: Dim, ;Efff >1-—c%
» It suffices to consider only the case ¢ < 1.

» Choose and fix an arbitrary p € (c?,1), and subdivide every nth shell
[27, 2"*1) in to equally-spaced disjoint intervals of length 2™; you will
need = 2"1-°) such subintervals.

» One can show that a.s. for all n large, ;ﬁf will a.s. intersect all of those
subintervals for all n large.

» Therefore, Dim,, £X > 1 —p forall p € (c?,1).
» The proof of Dim, £X > 1 — p is only slightly more delicate. O
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The Parabolic Anderson Model on R

» Consider PAM on R: € := space-time white noise;

ult,x) = u"(t,x) + olult,x)&(t, x) [t >0,x € RJ;
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» 0:R — R Lipschitz continuous and non random.
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» Consider PAM on R: € := space-time white noise;
u(t,x) = u"(t,x) +olult,x)&(t, x) [t >0,x € R];

» subject to u(0, x) € L°(R) non random and > 0;

» 0:R — R Lipschitz continuous and non random.

» Theorem. (Pardoux, 1974/75; Krylov—-Rozovskii, 1977; Walsh,

1984; ...) There exists a unique continuous solution.
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The Parabolic Anderson Model on R

» Consider PAM on R: € := space-time white noise;

u(t,x) = u"(t,x) +olult,x)&(t, x) [t >0,x € R];

v

subject to u(0, x) € L>°(R) non random and > 0;

v

0 :R — R Lipschitz continuous and non random.
Theorem. (Pardoux, 1974/75; Krylov—Rozovskii, 1977; Walsh,
1984; ...) There exists a unique continuous solution.

Theorem. (Mueller, 1991) If 6(0) = 0 and u(0,e) > 0 on a set of
positive measure, then u(t,x) > 0 for all t > 0 and x € R.

v

v
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v

subject to u(0, x) € L>°(R) non random and > 0;

v

0 :R — R Lipschitz continuous and non random.

Theorem. (Pardoux, 1974/75; Krylov—Rozovskii, 1977; Walsh,
1984; ...) There exists a unique continuous solution.

Theorem. (Mueller, 1991) If 6(0) = 0 and u(0,e) > 0 on a set of
positive measure, then u(t,x) > 0 for all t > 0 and x € R.
Today we concentrate on 2 special cases only:

v

v
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The Parabolic Anderson Model on R

» Consider PAM on R: € := space-time white noise;

u(t,x) = u"(t,x) +olult,x)&(t, x) [t >0,x € R];

v

subject to u(0, x) € L>°(R) non random and > 0;

v

0 :R — R Lipschitz continuous and non random.

Theorem. (Pardoux, 1974/75; Krylov—Rozovskii, 1977; Walsh,
1984; ...) There exists a unique continuous solution.
Theorem. (Mueller, 1991) If 6(0) = 0 and u(0,e) > 0 on a set of
positive measure, then u(t,x) > 0 for all t > 0 and x € R.
Today we concentrate on 2 special cases only:

» The linear heat equation (LHE): 6(u) < 1 and u(0, x) = 0;

v

v

v
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The Parabolic Anderson Model on R

» Consider PAM on R: € := space-time white noise;

u(t,x) = u"(t,x) +olult,x)&(t, x) [t >0,x € R];

v

subject to u(0, x) € L>°(R) non random and > 0;

v

0 :R — R Lipschitz continuous and non random.

Theorem. (Pardoux, 1974/75; Krylov—Rozovskii, 1977; Walsh,
1984; ...) There exists a unique continuous solution.

Theorem. (Mueller, 1991) If 6(0) = 0 and u(0,e) > 0 on a set of
positive measure, then u(t,x) > 0 for all t > 0 and x € R.
Today we concentrate on 2 special cases only:

» The linear heat equation (LHE): o(u) < 1 and u(0, x) = 0;
» The parabolic Anderson model (PAM): o(u) o< u and u(0, x) = 1.

v

v

v
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The Stochastic Heat Equation on R

u(t,x) = u"(t,x) + olu(t, x))&(t, x)

» LHE [0(u) = A and ug = 0] is a GRF and therefore well tempered.
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» LHE [0(u) = A and ug = 0] is a GRF and therefore well tempered.

» PAM [o(u) = Au; ug = 1] is highly complex; the more exposure to the
noise, the more difficult to predict its behavior in all possible regimes:
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The Stochastic Heat Equation on R

u(t,x) = u"(t,x) + olu(t, x))&(t, x)

» LHE [0(u) = A and ug = 0] is a GRF and therefore well tempered.

» PAM [o(u) = Au; ug = 1] is highly complex; the more exposure to the
noise, the more difficult to predict its behavior in all possible regimes:

» Intermittency (t — oo). Amir-Corwin-Quastel, 2011;
Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;
Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;
Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002,
2005; den Hollander-Greven, 2007; Florescu-Viens, 2006;
Foondun-K, 2009; Hofstad-Konig-Morters, 2006; Gartner-den
Hollander, 2006; Gartner-Konig, 2005; Gértner-Konig-Molchanov,
2000; Griininger-Konig, 2008; Konig-Lacoin-Morters-Sidorova,
2008; Molchanov, 1991... .
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The Stochastic Heat Equation on R

ult,x) = u"(t, x) + olult, x)&(t, x)

» LHE [0(u) = A and up = 0] is a GRF and therefore well tempered.

» PAM [o(u) = Au; ug = 1] is highly complex; the more exposure to the

noise, the more difficult to predict its behavior in all possible regimes:

» Intermittency (t — oo). Amir-Corwin-Quastel, 2011;
Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;

Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;

Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002,
2005; den Hollander-Greven, 2007; Florescu-Viens, 2006;
Foondun-K, 2009; Hofstad-Konig-Morters, 2006; Gartner-den
Hollander, 2006; Gartner-Koénig, 2005; Gartner-Kénig-Molchanov,
2000; Grininger-Konig, 2008; Kénig-Lacoin-Moérters-Sidorova,
2008; Molchanov, 1991... .

» Chaos (x — +00). Chen, 2014; Conus-Joseph-K, 2013.
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The Stochastic Heat Equation on R

ult,x) = u"(t, x) + olult, x)&(t, x)

» LHE [0(u) = A and up = 0] is a GRF and therefore well tempered.

» PAM [o(u) = Au; ug = 1] is highly complex; the more exposure to the
noise, the more difficult to predict its behavior in all possible regimes:

» Intermittency (t — oo). Amir-Corwin-Quastel, 2011;
Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;
Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;
Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002,
2005; den Hollander-Greven, 2007; Florescu-Viens, 2006;
Foondun-K, 2009; Hofstad-Konig-Morters, 2006; Gartner-den
Hollander, 2006; Gartner-Koénig, 2005; Gartner-Kénig-Molchanov,
2000; Grininger-Konig, 2008; Kénig-Lacoin-Moérters-Sidorova,
2008; Molchanov, 1991....

» Chaos (x — #00). Chen, 2014; Conus-Joseph-K, 2013.

» Nonlinear noise excitation (A — #o00). Kim-K, 2015;
Foondun-Joseph, 2015.
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u(t,x) = u"(t,x) for (t,x) € (0,00) x [0, 1] with Dirichlet BC
u(0, x) = sin(7rx)

The Stochastic Heat Equation on [0, 1]
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The Stochastic Heat Equation on [0, 1]

ult,x) = u"(t,x) + olu(t,x))&(t, x) for (t,x) € (0,00) x [0,1] with Dirichlet BC
u(0, x) = sin(ntx); o(u) = u on the left; o(u) = 1 on the right

space
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The Stochastic Heat Equation on [0, 1]

ult,x) = u"(t,x) + Ao(ult, x))&(t, x) for (¢, x) € (0,00) x [0,1] with Dirichlet BC
u(0, x) = sin(mrx); o(u) = 10u on the left; o(u) = 10 on the right
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The Stochastic Heat Equation on [0, 1]

ult,x) = u"(t,x) + olu(t,x))&(t, x) for (t,x) € (0,00) x [0,1] with Dirichlet BC
u(0, x) = sin(mrx); o(u) = 50u on the left; o(u) = 50 on the right
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The Main Results

/ 17"(t,x) + £(t, x) [Z(0,x) = 0]

Z(t,x)
u(t, x) %u”(t,x) + u(t, x)&(t, x) [u(0, x) := 1]

» Natural to think of h(t, x) = log u(t, x) instead [H-C sol" to KPZ|.
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The Main Results

Z(t,x)=%Z”(t,x)+S(t,x) [Z(0,x) = 0]

ult,x) = %u”(t,x) + u(t, x)&(t, x) [u(0, x) := 1]

» Natural to think of h(t, x) = log u(t, x) instead [H-C sol” to KPZ)].
> Define for all ¢, t > 0, [Conus-K-Joseph, 2013; Xia Chen, 2014]

LE(t) = {x >10: Z(t,x) > ct”“[logx]m}

Le(t) == {X >10: logult,x) > Ctl/?’[logx]z/?’} .



The Main Results

Z(t,x)=%Z”(t,x)+£(t,x) [Z(0,x) = 0]
ult,x) = Fu"(t,x) + ult,x)&(t, x) [u(0, x) :=1]

» Natural to think of h(t,x) = log u(t, x) instead [H-C sol” to KPZ].
> Define for all ¢, t > 0, [Conus-K-Joseph, 2013; Xia Chen, 2014]

LE(t) = {x >10: Z(t,x) > ct1/4[logx]1/2}

LE(t) = {X >10: logu(t,x) > Ct1/3[|ogX]2/3} '



The Main Results

Z(t,x) = 3Z"(t,x) + &(t, x) [Z(0,x) = 0]
ult,x) = Fu"(t,x) + ult,x)&(t, x) [u(0, x) :=1]

» Natural to think of h(t, x) = log u(t, x) instead [H-C sol” to KPZ)].
> Define for all ¢, t > 0, [Conus-K-Joseph, 2013; Xia Chen, 2014]
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