On the chaotic character of some parabolic SPDEs

Davar Khoshnevisan
(joint with Daniel Conus, Mathew Joseph, and Shang-Yuan Shiu)

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar
Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$. Then $u_n := n \prod_{j=1}^{\infty} \xi_j = \{2^n \text{ with probab. } 2^{-n}, 0 \text{ with probab. } 1 - 2^{-n}\}$.

Conclusions:

$u_n = 0$ for all n large a.s.; in particular, $u_n \rightarrow 0$ a.s.

$n - 1 \log E(u_k^n) \rightarrow \gamma_k := (k - 1) \log 2$ for all $k > 1$.

Now replicate this experiment.
A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., \(\xi_1, \xi_2, \ldots \) i.i.d. with \(P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2 \)

- Then

\[
 u_n := \prod_{j=1}^{n} \xi_j = \begin{cases}
 2^n & \text{with probab. } 2^{-n}, \\
 0 & \text{with probab. } 1 - 2^{-n}.
\end{cases}
\]

Conclusions:

- \(u_n = 0 \) for all \(n \) large a.s.; in particular, \(u_n \to 0 \) a.s.

- \(n^{-1} \log E(u_n^n) \to \gamma_k := (k-1) \log 2 \) for all \(k > 1 \)

Now replicate this experiment.

Is this degeneracy because of the many zeros? No.
A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$

- Then

$$u_n := \prod_{j=1}^{n} \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$

- Then
 \[u_n := \prod_{j=1}^{n} \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases} \]

- Conclusions:
 - $u_n = 0$ for all n large a.s.; in particular, $u_n \to 0$ a.s.
A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., \(\xi_1, \xi_2, \ldots \) i.i.d. with \(P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2 \)
- Then
 \[
 u_n := \prod_{j=1}^{n} \xi_j = \begin{cases}
 2^n & \text{with probab. } 2^{-n}, \\
 0 & \text{with probab. } 1 - 2^{-n}.
 \end{cases}
 \]
- Conclusions:
 - \(u_n = 0 \) for all \(n \) large a.s.; in particular, \(u_n \to 0 \) a.s.
 - \(n^{-1} \log E(u_n^k) \to \gamma_k := (k - 1) \log 2 \) for all \(k > 1 \)
A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$

- Then
 $$u_n := \prod_{j=1}^{n} \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
 - $u_n = 0$ for all n large a.s.; in particular, $u_n \to 0$ a.s.
 - $n^{-1} \log E(u_n^k) \to \gamma_k := (k - 1) \log 2$ for all $k > 1$

- Now replicate this experiment
A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$

- Then

$$u_n := \prod_{j=1}^{n} \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
 - $u_n = 0$ for all n large a.s.; in particular, $u_n \to 0$ a.s.
 - $n^{-1} \log E(u_n^k) \to \gamma_k := (k - 1) \log 2$ for all $k > 1$

- Now replicate this experiment

- Is this degeneracy because of the many zeros? No
Let b denote 1-D Brownian motion and consider the exponential martingale $u_t := e^{\lambda b_t - (\lambda^2 t/2)}$.
A second simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_t := e^{\lambda b_t - (\lambda^2 t/2)}$
- $u_t \to 0$ as $t \to \infty$ [strong law]
A second simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_t := e^{\lambda b_t - (\lambda^2 t/2)}$
- $u_t \to 0$ as $t \to \infty$ [strong law]
- $t^{-1} \log E(u_t^k) = \lambda^2 \binom{k}{2} \to \gamma_k := \lambda^2 \binom{k}{2}$ for $k > 1$
A second simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

Let \(b \) denote 1-D Brownian motion and consider the exponential martingale
\[
u_t := e^{\lambda b_t - (\lambda^2 t/2)}
\]
\[
u_t \to 0 \text{ as } t \to \infty \quad [\text{strong law}]
\]
\[
t^{-1} \log E(u_t^k) = \lambda^2 \binom{k}{2} \to \gamma_k := \lambda^2 \binom{k}{2} \text{ for } k > 1
\]
In the first example, \(\gamma_k \approx k \log 2 \); in the second, \(\gamma_k \approx \frac{1}{2} \lambda^2 k^2 \)
A second simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

Let b denote 1-D Brownian motion and consider the exponential martingale $u_t := e^{\lambda b_t - (\lambda^2 t/2)}$

$u_t \rightarrow 0$ as $t \rightarrow \infty$ [strong law]

$t^{-1} \log E(u_t^k) = \lambda^2 \binom{k}{2} \rightarrow \gamma_k := \lambda^2 \binom{k}{2}$ for $k > 1$

In the first example, $\gamma_k \approx k \log 2$; in the second, $\gamma_k \approx \frac{1}{2} \lambda^2 k^2$

The examples are “similar,”

$$e^{b_t - (t/2)} \approx \prod_j \left(1 - (\Delta b)_j - \frac{1}{2}(\Delta t)_j \right)$$
A simulation \[
\dot{u}_t(x) = (\pi/2)u''_t(x) + \lambda u_t(x)\eta_t, \quad u_0 \equiv 1
\]
\[u_t = \exp\{\lambda b_t - (\lambda t/2)\}\] with \(\lambda = 0.5\) (left) and \(\lambda = 5\) (right)
Intermittency in cosmology
The model (for today)

\[\frac{\partial}{\partial t} u_t(x) = \kappa \frac{\partial^2}{\partial x^2} u_t(x) + \sigma(u_t(x))\eta_t(x), \]

where:

1. \(\kappa > 0; \)
The model (for today)

\[
\frac{\partial}{\partial t} u_t(x) = \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} u_t(x) + \sigma(u_t(x)) \eta_t(x),
\]

where:

1. \(\kappa > 0; \)
2. \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \) is Lipschitz continuous;
The model (for today)

\[
\frac{\partial}{\partial t} u_t(x) = \kappa \frac{\partial^2}{\partial x^2} u_t(x) + \sigma(u_t(x)) \eta_t(x),
\]

where:

1. \(\kappa > 0; \)
2. \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \) is Lipschitz continuous;
3. \(\eta \) is space-time white noise; i.e., a centered GGRF with

\[
\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s) \delta_0(x - y)
\]
The model (for today)

\[
\frac{\partial}{\partial t} u_t(x) = \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} u_t(x) + \sigma(u_t(x)) \eta_t(x),
\]

where:

1. \(\kappa > 0; \)
2. \(\sigma : \mathbb{R} \to \mathbb{R} \) is Lipschitz continuous;
3. \(\eta \) is space-time white noise; i.e., a centered GGRF with
 \[
 \text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s)\delta_0(x - y)
 \]
4. \(u_0 : \mathbb{R} \to \mathbb{R}_+ \) nonrandom, bounded, and measurable;
The model (for today)

\[\frac{\partial}{\partial t} u_t(x) = \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} u_t(x) + \sigma(u_t(x)) \eta_t(x), \]

where:

1. \(\kappa > 0; \)
2. \(\sigma : \mathbb{R} \to \mathbb{R} \) is Lipschitz continuous;
3. \(\eta \) is space-time white noise; i.e., a centered GGRF with

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s)\delta_0(x - y) \]

4. \(u_0 : \mathbb{R} \to \mathbb{R}_+ \) nonrandom, bounded, and measurable;
5. \(u \) exists, is unique and continuous (Walsh, 1986);
The model (for today)

\[
\frac{\partial}{\partial t} u_t(x) = \frac{\nu}{2} \frac{\partial^2}{\partial x^2} u_t(x) + \sigma(u_t(x)) \eta_t(x),
\]

where:

1. \(\nu > 0; \)
2. \(\sigma : \mathbb{R} \to \mathbb{R} \) is Lipschitz continuous;
3. \(\eta \) is space-time white noise; i.e., a centered GGRF with
 \[
 \text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s)\delta_0(x - y)
 \]
4. \(u_0 : \mathbb{R} \to \mathbb{R}_+ \) nonrandom, bounded, and measurable;
5. \(u \) exists, is unique and continuous (Walsh, 1986);
6. Either \(0 < \inf \sigma \leq \sup \sigma < \infty \), or \(\sigma(u) \propto u \) [random media].
Weak intermittency

\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

\[
0 < \limsup_{t \to \infty} \frac{1}{t} \log E \left(|u_t(x)|^k \right) < \infty \quad (k \geq 2, x \in \mathbb{R})
\]
Weak intermittency

\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

\[
0 < \limsup_{t \to \infty} \frac{1}{t} \log E \left(|u_t(x)|^k \right) < \infty \quad (k \geq 2, x \in \mathbb{R})
\]

- Weak intermittency implies “localization” on large time scales.
Weak intermittency

\[\partial_t u = \left(\kappa/2 \right) \partial_{xx} u + \sigma(u) \eta \]

\[0 < \limsup_{t \to \infty} \frac{1}{t} \log E \left(|u_t(x)|^k \right) < \infty \quad (k \geq 2, x \in \mathbb{R}) \]

- Weak intermittency implies “localization” on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically “chaotic,” and for many choices of \(\sigma \):
Weak intermittency
\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

- (weak) intermittency \([\text{Bertini–Cancrini, 1994; Carmona–Molchanov, 1994; Molchanov, 1991; Foondun–K., 2010; Zel’dovitch et al, 1985, 1988, 1990; \ldots}]:

\[0 < \limsup_{t \to \infty} \frac{1}{t} \log E \left(|u_t(x)|^k \right) < \infty \quad (k \geq 2, x \in \mathbb{R}) \]

- Weak intermittency implies “localization” on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically “chaotic,” and for many choices of \(\sigma \):
 - For all \(t > 0 \); and
Weak intermittency
\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

\[0 < \limsup_{t \to \infty} \frac{1}{t} \log E \left(|u_t(x)|^k \right) < \infty \quad (k \geq 2, x \in \mathbb{R}) \]

- Weak intermittency implies “localization” on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically “chaotic,” and for many choices of \(\sigma \):
 - For all \(t > 0 \); and
 - both in time, \textit{and} space
Weak intermittency

$$\partial_t u = (\kappa/2)\partial_{xx} u + \sigma(u)\eta$$

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E \left(|u_t(x)|^k \right) < \infty \quad (k \geq 2, x \in \mathbb{R})$$

- Weak intermittency implies “localization” on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically “chaotic,” and for many choices of σ:
 - For all $t > 0$; and
 - both in time, and space

- Today: What happens before the onset of localization?
Optimal regularity
\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

- Can frequently understand parabolic equations via optimal regularity
 [Lunardi, 1995, and older works by Pazy, Kato, ...]
Optimal regularity
\(\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \)

- Can frequently understand parabolic equations via optimal regularity
 [Lunardi, 1995, and older works by Pazy, Kato, . . .]
- If \(\sigma(0) = 0 \), then the fact that \(u_0(x) \geq 0 \) implies that \(u_t(x) \geq 0 \)
 [Mueller’s comparison principle]
Optimal regularity
\[\partial_t u = (\kappa/2)\partial_{xx} u + \sigma(u)\eta \]

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If \(\sigma(0) = 0 \), then the fact that \(u_0(x) \geq 0 \) implies that \(u_t(x) \geq 0 \) [Mueller’s comparison principle]
- If \(\sigma(0) = 0 \) and \(u_0 \in L^2(\mathbb{R}) \) then \(u_t \in L^2(\mathbb{R}) \) a.s. (Dalang–Mueller, 2003)
Optimal regularity
\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If \(\sigma(0) = 0 \), then the fact that \(u_0(x) \geq 0 \) implies that \(u_t(x) \geq 0 \) [Mueller’s comparison principle]
- If \(\sigma(0) = 0 \) and \(u_0 \in L^2(\mathbb{R}) \) then \(u_t \in L^2(\mathbb{R}) \) a.s. (Dalang–Mueller, 2003)
- If \(u_0 \in C^\alpha(\mathbb{R}) \) for some \(\alpha > \frac{1}{2} \) and has compact support, and if \(\sigma(0) = 0 \), then \(\sup_{x \in \mathbb{R}} u_t(x) < \infty \) a.s. for all \(t > 0 \) (Foondun–Kh, 2010)
Optimal regularity

\[\partial_t u = (\kappa/2) \partial_{xx} u + \sigma(u) \eta \]

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If \(\sigma(0) = 0 \), then the fact that \(u_0(x) \geq 0 \) implies that \(u_t(x) \geq 0 \) [Mueller’s comparison principle]
- If \(\sigma(0) = 0 \) and \(u_0 \in L^2(\mathbb{R}) \) then \(u_t \in L^2(\mathbb{R}) \) a.s. (Dalang–Mueller, 2003)
- If \(u_0 \in C^\alpha(\mathbb{R}) \) for some \(\alpha > \frac{1}{2} \) and has compact support, and if \(\sigma(0) = 0 \), then \(\sup_{x \in \mathbb{R}} u_t(x) < \infty \) a.s. for all \(t > 0 \) (Foondun–Kh, 2010)
- Today’s goal: The solution can be sensitive to the choice of \(u_0 \) (we study cases where \(u_t \) is unbounded for all \(t > 0 \))
Theorem (Conus–Joseph–Kh)
A moderately-noisy model

\[\dot{u} = \left(\kappa / 2 \right) u'' + \sigma(u) \eta \]
Theorem (Conus–Joseph–Kh)
A moderately-noisy model

\[\dot{u} = \left(\kappa / 2 \right) u'' + \sigma(u) \eta \]

If \(0 < \inf_{x \geq 0} \sigma(x) \leq \sup_{x \geq 0} \sigma(x) < \infty \), then

\[\limsup_{|x| \to \infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \approx \kappa^{-1/4} \quad \text{a.s. for all } t > 0 \]
Theorem (Conus–Joseph–Kh)
A moderately-noisy model

\[\dot{u} = \left(\kappa / 2 \right) u'' + \sigma(u) \eta \]

If \(0 < \inf_{x \geq 0} \sigma(x) \leq \sup_{x \geq 0} \sigma(x) < \infty \), then

\[\limsup_{|x| \to \infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \asymp \kappa^{-1/4} \quad \text{a.s. for all } t > 0 \]

Power of \(\kappa \) suggests the universality class of random walks in weak interactions with their random environment
Theorem (Conus–Joseph–Kh)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) u'' + \lambda u \eta \quad [\sigma(x) = \lambda x] \]
Theorem (Conus–Joseph–Kh)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) u'' + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \), then

\[\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \lesssim \frac{1}{\kappa^{1/3}} \quad \text{a.s. for all } t > 0 \]
Theorem (Conus–Joseph–Kh)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) u'' + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \), then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \lesssim \frac{1}{x^{1/3}} \quad \text{a.s. for all } t > 0
\]

\[u_t(x) \approx \exp \left\{ \text{const} \cdot \left(\log |x| / \sqrt{\kappa} \right)^{2/3} \right\} \]
Theorem (Conus–Joseph–Kh)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) u'' + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \), then

\[\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \lesssim \frac{1}{\kappa^{1/3}} \quad \text{a.s. for all } t > 0 \]

\[u_t(x) \approx \exp \left\{ \text{const} \cdot \left(\frac{\log |x|}{\sqrt{\kappa}} \right)^{2/3} \right\} \]

Power of \(\kappa \) suggests the universality class of random-matrix models (GUE)
Theorem (Conus–Joseph–Kh)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) u'' + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \), then

\[\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \approx \frac{1}{\xi^{1/3}} \quad \text{a.s. for all } t > 0 \]

\[u_t(x) \approx \exp \left\{ \text{const} \cdot \left(\log |x| / \sqrt{\kappa} \right)^{2/3} \right\} \]

Power of \(\kappa \) suggests the universality class of random-matrix models (GUE)

“KPZ fluctuation exponents” \((1/3, 2/3) \)
Ideas used in proofs

- **Coupling.** If x_1, \ldots, x_N are sufficiently far apart, then $u_t(x_1), \ldots, u_t(x_N)$ are “approximately independent”
Ideas used in proofs

- **Coupling.** If x_1, \ldots, x_N are sufficiently far apart, then $u_t(x_1), \ldots, u_t(x_N)$ are “approximately independent”

- Obtain good tail estimates:
Ideas used in proofs

- **Coupling.** If x_1, \ldots, x_N are sufficiently far apart, then $u_t(x_1), \ldots, u_t(x_N)$ are “approximately independent”
- Obtain good tail estimates:
 - $\log P\{u_t(x) \geq \lambda\} \asymp -x^{1/2} \lambda^2$ if σ bounded above and below
Ideas used in proofs

- **Coupling.** If x_1, \ldots, x_N are sufficiently far apart, then $u_t(x_1), \ldots, u_t(x_N)$ are “approximately independent”

- **Obtain good tail estimates:**
 - $\log P\{u_t(x) \geq \lambda\} \asymp -x^{1/2} \lambda^2$ if σ bounded above and below
 - $\log P\{u_t(x) \geq \lambda\} \asymp -x^{1/2}(\log \lambda)^{3/2}$ for parabolic Anderson model
Ideas used in proofs

- **Coupling.** If x_1, \ldots, x_N are sufficiently far apart, then $u_t(x_1), \ldots, u_t(x_N)$ are “approximately independent”
- **Obtain good tail estimates:**
 - $\log P\{u_t(x) \geq \lambda\} \asymp -\kappa^{1/2} \lambda^2$ if σ bounded above and below
 - $\log P\{u_t(x) \geq \lambda\} \asymp -\kappa^{1/2} (\log \lambda)^{3/2}$ for parabolic Anderson model
- **Similar results for Majda’s passive–scalar model** [stretched exponential tails, but on a non-log scale] by Bronski–McLaughlin (2000)
Colored noise

\[\dot{u}_t(x) = (\kappa/2)(\Delta u_t)(x) + \sigma(u_t(x))\eta_t(x) \quad (t > 0, \ x \in \mathbb{R}^d) \]

- Now

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(s - t)f(x - y) \]

(Dalang, 1999; Hu–Nualart, 2009, …)
Colored noise

\[\dot{u}_t(x) = \left(\kappa/2 \right) (\Delta u_t)(x) + \sigma(u_t(x))\eta_t(x) \quad (t > 0, x \in \mathbb{R}^d) \]

Now

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(s - t)f(x - y) \]

(Dalang, 1999; Hu–Nualart, 2009, ...)

Suppose \(f = h \ast \tilde{h} \) for some \(h \in L^2(\mathbb{R}^d) \), so \(\exists! \) solution \(\forall d \geq 1 \)
Colored noise

\[\dot{u}_t(x) = \frac{\kappa}{2} (\Delta u_t)(x) + \sigma(u_t(x)) \eta_t(x) \quad (t > 0, x \in \mathbb{R}^d) \]

- Now

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(s - t)f(x - y) \]

(Dalang, 1999; Hu–Nualart, 2009, …)

- Suppose \(f = h \ast \tilde{h} \) for some \(h \in L^2(\mathbb{R}^d) \), so \(\exists! \) solution \(\forall d \geq 1 \)

- \(\exists \) KPZ version also (Medina–Hwa–Kardar–Zhang, 1989)
Theorem (Conus–Joseph–Kh–Shiu)

The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \) and \(h \) is "nice," then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{\log |x|} \approx \frac{1}{2} \text{ a.s. for all } t > 0 \text{ and } \kappa \text{ small}
\]

There are other variations as well

"fluctuation exponent" \((0, 1/2)\)

Are there in-between models? Yes.
Theorem (Conus–Joseph–Kh–Shiu)

The parabolic Anderson model

\[\dot{u} = \left(\kappa/2 \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \) and \(h \) is “nice,” then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \lesssim 1 \quad \text{a.s. for all } t > 0 \text{ and } \kappa \text{ small}
\]
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = (\kappa/2) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

- If \(\lambda > 0 \) and \(h \) is “nice,” then

\[\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \asymp 1 \quad \text{a.s. for all } t > 0 \text{ and } \kappa \text{ small} \]

- There are other variations as well
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = (\kappa/2) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

If \(\lambda > 0 \) and \(h \) is “nice,” then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \asymp 1 \quad \text{a.s. for all } t > 0 \text{ and } \kappa \text{ small}
\]

There are other variations as well

“fluctuation exponent” \((0, 1/2)\)
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

- If \(\lambda > 0 \) and \(h \) is “nice,” then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \asymp 1 \quad \text{a.s. for all } t > 0 \text{ and } \kappa \text{ small}
\]

- There are other variations as well
- “fluctuation exponent” \((0, \frac{1}{2})\)
- Are there in-between models? Yes.
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s) \cdot \|x - y\|^{-\alpha} \]
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s) \cdot \|x - y\|^{-\alpha} \]

The solution \(\exists! \) when \(\alpha < \min(d, 2) \) [Dalang, 1999]
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = \left(\frac{\kappa}{2} \right) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s) \cdot \|x - y\|^{-\alpha} \]

The solution \(\exists! \) when \(\alpha < \min(d, 2) \) [Dalang, 1999]

If \(\lambda > 0 \), then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{\left(\log \|x\| \right)^{2/(4-\alpha)}} \asymp x^{-\alpha/(4-\alpha)} \quad \text{a.s. for all } t > 0
\]
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = (\kappa/2) \Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s) \cdot \|x - y\|^{-\alpha} \]

The solution \(\exists! \) when \(\alpha < \min(d, 2) \) [Dalang, 1999]

If \(\lambda > 0 \), then

\[
\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log \|x\|)^{2/(4-\alpha)}} \asymp \kappa^{-\alpha/(4-\alpha)} \quad \text{a.s. for all } t > 0
\]

“fluctuation exponent” \((2\psi - 1, \psi) = \left(\frac{\alpha}{4-\alpha}, \frac{2}{4-\alpha}\right) \)
Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

\[\dot{u} = (\kappa/2)\Delta u + \lambda u \eta \quad [\sigma(x) = \lambda x] \]

\[\text{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t - s) \cdot \|x - y\|^{-\alpha} \]

The solution \(\exists! \) when \(\alpha < \min(d, 2) \) [Dalang, 1999]

If \(\lambda > 0 \), then

\[\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log \|x\|)^{2/(4-\alpha)}} \asymp \kappa^{\alpha/(4-\alpha)} \quad \text{a.s. for all } t > 0 \]

“fluctuation exponent” \((2\psi - 1, \psi) = (\alpha/(4-\alpha), 2/(4-\alpha)) \)

\(f = h \ast \tilde{h} \iff \alpha = 0 \), and \(f = \delta_0 \iff \alpha = 1 = \min(d, 2) \) [spectral analogies]
Initial point mass

- In all of the preceding, we assumed that

\[0 < \inf u_0 \leq \sup u_0 < \infty. \]
In all of the preceding, we assumed that

\[0 < \inf u_0 \leq \sup u_0 < \infty. \]

Question: (Ben Arous, Quastel, 2011) What if \(u_0 = \delta_0 \)?
Initial point mass

- In all of the preceding, we assumed that

$$0 < \inf u_0 \leq \sup u_0 < \infty.$$

- **Question:** (Ben Arous, Quastel, 2011) What if $u_0 = \delta_0$?

- **Theorem.** (Conus–Joseph–Kh–Shiu, 2011 [?]) Consider

$$\partial_t u_t(x) = \frac{\kappa}{2} u''_t(x) + \sigma(u_t(x))\eta_t(x),$$

subject to $u_0 :=$ a finite Borel measure of bounded support, and $\sigma(0) = 0$. Then $\sup_x |u_t(x)| < \infty$ a.s. for all $t > 0$.

D. Khoshnevisan (Univ of Utah) SPDEs and chaos September 22, 2011 15 / 15