Stochastics Seminar Department of Mathematics, University of Utah

Independent Constants and Some Gaussian Inequalities

Wenbo V. Li

University of Delaware **Time and Place:** Wednesday April 19, 2006; 3:30–4:25 p.m.; JWB 308

Given *d* real-valued random variables X_1, \dots, X_d , there are various ways to measure dependence-structures among them. They include measuring correlations, mixed moments, etc. In this talk, we define and study a new measure that captures the amount of dependence when it is compared with the "best" independent ones. To be more precise, we consider the best (largest constant α and smallest constant β) possible probability bounds

$$\alpha \prod_{i=1}^{d} \mathbb{P}(W_i \in B_i) \leq \mathbb{P}\left(\bigcap_{i=1}^{d} \{X_i \in B_i\}\right) \leq \beta \prod_{i=1}^{d} \mathbb{P}(Y_i \in B_i),$$

for some real valued random variables W_i , Y_i , and all Borel sets B_i , $1 \le i \le d$. The joint Gaussian case will be discussed in detail.