INTERSECTION LOCAL TIMES: EXPONENTIAL ASYMPTOTICS AND LAWS OF THE ITERATED LOGARITHM

Xia Chen

University of Tennessee

The report consists of three recent papers, one is the joint work with W. Li (2002) and one is the joint work with R. Bass (2003).

Let $\{S_1(n)\}_{n\geq 1}, \dots, \{S_p(n)\}_{n\geq 1}$ be independent, symmetric and square integrable ddimensional lattice valued random walks. It is a classic fact that they intersect if and only if

$$p(d-2) \le 2 \tag{(*)}$$

This talk concerns about the law of the iterated logarithm and related large (moderate) deviations for the intersection local time defined by

$$I_n = \# \Big\{ (k_1, \cdots, k_p) \in [1, n]^p; \quad S_1(k_1) = \cdots S_p(k_p) \Big\} \qquad n = 1, 2, \cdots$$

under the condition (*). The critical cases "d = 4, p = 2" and "d = p = 3" have been studied by Marcus-Rosen (1997) and by Rosen (1997), respectively. To complete the picture, my focus is on the non-critical cases defined by

$$p(d-2) < 2 \tag{**}$$

and I will report some quite complete results recently obtained in Chen-Li (2002) in the case d = 1 and in Chen (2003) in the case $d \ge 2$.

I will also speak on the same type of problems for self-intersection local time

$$J_n = \# \{ (k_1, \dots, k_p); \ 1 \le k_1 < \dots < k_p \le n \text{ and } S(k_1) = \dots S(k_p) \} \quad n = 1, 2, \dots$$

in the context of a single random walk $\{S(n)\}_{n\geq 1}$. I will first talk about some essentially complete results achieved in Chen-Li (2002) as d = 1. The case of multi-dimensions is a different story. In this talk I will report some results obtained in Bass-Chen (2003) in the context of renormalized self intersection local times of 2-dimensional Brownian motion and explain how this is related to our problems.

Some background, links, and applications of our results will also be provided.