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1. Introduction.

Let (Nt, t ≥ 0) denote a rate one Poisson process. For every x ∈ R1
+, let us define the

occupation time of {x} by time t as follows:

ξt(x) ∆=
∫ t

0

1{x}(Nu)du.

We have adopted the customary notation that 1A(r) is one if r ∈ A and zero otherwise.

Evidently, ξt(x) = 0 almost surely if and only if x 6∈ Z1
+. With this in mind, we can now

define the most visited site of N up to time t as

Xt
∆= min{k ≥ 0 : ξt(k) ≥ ξt(i) for all i ≥ 0}.

In this paper, we are interested in the growth properties of the process X.

Suppose, instead, N were replaced by a mean zero finite variance lattice random walk.

Then defining X in the obvious way, asymptotic properties of this favorite point process

were studied by Erdős and Révész (1984) and Bass and Griffin (1985). Erdős and Révész

have shown that the limsup of the favorite point process is infinity and have determined

the rate with which this occurs. The surprising results of Bass and Griffin demonstrate

that this limsup is, in fact, a limit; consequently, the favorite point process is transient. In

the present setting, it is not hard to see that almost surely

lim
t→∞

Xt →∞.

Indeed, elementary properties of N demonstrate that Xt is uniformly distributed on the

the set {0, 1, . . . ,m} conditional on the event {Nt = m}. Therefore, by the strong law of

large numbers applied to N, Xt/t converges in law to the uniform measure on [0, 1]. From

this alone, one can deduce that almost surely

lim inf
t→∞

Xt

t
= 0 and lim sup

t→∞

Xt

t
= 1.

This paper is an attempt to refine these statements. Unlike the recurrent case, where the

liminf (viz., Bass and Griffin) is harder to derive than the limsup (viz., Erdős and Révész),

in the present case it is quite the opposite.

Although sometimes in disguise, the favorite point process, Xt, appears quite naturally

in the literature on maximal spacings. For instance, the fact that Xt/t is nearly uniformly
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distributed on [0,1] appears in several applications; see Slud (1978) and Pyke (1970,1980).

For a thorough survey paper on this subject, see Pyke (1965).

We begin with a result on the lower envelope of X, which demonstrates the rate of

escape of Xt as t→∞.

Theorem 1.1. Suppose ψ : [1,∞) 7→ R1
+ is decreasing to zero as t → ∞ and that

t 7→ tψ(t) is increasing. Then almost surely

lim inf
t→∞

Xt

tψ(t)
=
{

0, if J(ψ) =∞
∞, if J(ψ) <∞ ,

where

J(ψ) ∆=
∫ ∞

1

ψ(t)
dt

t
.

For example, one can take ψ(t) =
(

ln t
)−a to see that almost surely

lim inf
t→∞

(ln t)a

t
Xt =

{
0, if a ≤ 1
∞, if a > 1 .

We have the following theorem on the upper envelope of X.

Theorem 1.2. Almost surely

lim sup
t→∞

Xt − t√
2t ln ln t

= 1.

It should be noted that this is not an ordinary law of the iterated logarithm: it is

closer, in spirit, to the one–sided laws of the iterated logarithm described in Pruitt (1981).

As we have already noted, Xt/t is asymptotically uniformly distributed on [0, 1]. From

this, it is evident that E(Xt) ∼ t/2 as t → ∞. From this perspective, the centering in

Theorem 1.2 is rather exotic. Moreover, unlike the case for the classical law of the iterated

logarithm, (Xt− t)/
√
t is not converging weakly to the normal law. Indeed, for each a ≥ 0,

our Lemma 3.1 implies

P(Xt ≥ t+ a
√
t)→ 0 as t→ 0.

This shows that the event that X is near its upper envelope is very rare; so rare that proving

Theorem 1.2 by the usual methods (i.e., obtaining sharp probability estimates and then

using blocking arguments) is formidable, if not impossible. Instead we will take a different

route: we will define a sequence of stopping times, (Tk), and show that (with probability

one) infinitely often N(Tk) is large in the sense of the law of the iterated logarithm and

N(Tk) = X(Tk) eventually. Thus, we show that X automatically inherits a law of the

iterated logarithm from N .

We also have the following refinement of the upper half of Theorem 1.2:
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Theorem 1.3. Let ψ : [1,∞) 7→ R1
+ be increasing to infinity as t→∞. Suppose further

that ψ satisfies ∫ ∞
1

exp
(
− ψ2(t)/2

) dt

tψ(t)
<∞.

Then almost surely Xt ≤ t+
√
tψ(t) for all t sufficiently large.

Consequently for any p > 1 and with probability one,

Xt ≤ t+
√
t
√

2 ln ln t+ p ln ln ln t eventually,

while, by the integral test of Feller (see Bai (1989)),

Nt ≥ t+
√
t
√

2 ln ln t+ 3 ln ln ln t infinitely often.

Finally, we point out that by the strong law of large numbers for N and our Theorem

1.1, one easily obtains the following result on the size of the gap between Nt and Xt.

Corollary 1.4. With probability one,

lim sup
t→∞

Nt −Xt

t
= 1.

The corresponding liminf result is trivial, since by its very definition, Xt = Nt, in-

finitely often.

2. Proof of Theorem 1.1.

In this section, we will prove Theorem 1.1. Before doing so, we will prove some lemmas

and propositions concerning the distribution of Xt (Lemma 2.1), the joint distribution of

Xs and Xt (Proposition 2.3) and the rate of convergence of Xt/t to the uniform measure

on [0, 1] as t→∞ (Lemma 2.5).

We start with the following characterization of the joint distribution of the interar-

rival times of a conditioned Poisson process: Given {Nt = m}, the joint distribution of

(ξt(0), . . . , ξt(m)) is the same as that of (Y0/S, . . . , Ym/S), where (Yi, 0 ≤ i ≤ m) is a

collection of independent exponentially distributed random variables with parameter one,

and S = t−1(Y0 + . . . + Ym) (see, e.g., Karlin and Taylor (1981), p. 105). As such, for

0 ≤ k ≤ m, we have

(2.1) P(Xt = k|Nt = m) = P(Yk > Yi for 0 ≤ i ≤ m with i 6= k) =
1

m+ 1
.

Thus, given {Nt = m}, Xt is uniformly distributed on the set {0, 1, . . . ,m}. From this we

can readily calculate the distribution of Xt, which is what we do next.
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Lemma 2.1. For all integers k ≥ 1,

(1) P(Xt ≥ k) = P(Nt ≥ k)− k
t P(Nt ≥ k + 1).

(2) P(Xt < k) = P(Nt < k) + k
t P(Nt ≥ k + 1).

Proof. We will demonstrate (1): (2) follows from (1) by taking complements.

Since Xt ≤ Nt, we have

P(Xt ≥ k) =
∞∑
m=k

P(Xt ≥ k|Nt = m)P(Nt = m)

By (2.1) we have

P(Xt ≥ k|Nt = m) = 1− k

m+ 1
.

Consequently,

P(Xt ≥ k) = P(Nt ≥ k)−
∞∑
m=k

k

m+ 1
P(Nt = m)

= P(Nt ≥ k)− k

t

∞∑
m=k

tm+1

(m+ 1)!
e−t

= P(Nt ≥ k)− k

t
P(Nt ≥ k + 1),

which establishes (1). �

Next we turn to estimating the joint distribution of Xs and Xt. To do so, we will

need additional notation: given 0 < s < t, and a nonnegative integer k, let

ξs,t(k) ∆= ξt(k)− ξs(k) =
∫ t

s

1{k}(Nu)du.

The following lemma is an important calculation in the joint probability estimate:

Lemma 2.2. Let 0 < s < t and let 0 ≤ j ≤ m < k be integers. Then

P(Xs ≤ j, Xt = k, Ns = m) ≤ P(Xs ≤ j, Ns = m) · P(Xt−s = k −m).

Proof. The events {Nt = q}, q ≥ k, partition the event, {Xs ≤ j, Xt = k, Ns = m}.
Thus

P(Xs ≤ j, Xt = k, Ns = m) =
∞∑
q=k

P(Aq),
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where

Aq = {Xs ≤ j, Ns = m, Xt = k, Nt = q}

Given {Nt = q} and {Xt = k}, we observe that k is the minimum index for which

ξt(k) ≥ ξt(i) for 0 ≤ i ≤ q.

Since Ns = m < k, we note that ξs(k) = 0; thus, ξt(k) = ξs,t(k). Now ξs,t(i) ≤ ξt(i) for all

i ≥ 0; thus, k is the minimum index for which

ξs,t(k) ≥ ξs,t(i) for m ≤ i ≤ q.

Given Ns = m, and m ≤ i ≤ q, we have

ξs,t(i) =
∫ t

s

1{i−m}(Nu −Ns)du,

which is independent of the event {Ns = m, Xs ≤ j} and, as a process in i ∈ {m, . . . , q},
is distributed as {ξt−s(i−m), m ≤ i ≤ q}. Hence

P(Aq) ≤ P(Xs ≤ j, Ns = m) · P(Xt−s = k −m, Nt−s = q −m).

We obtain the desired result upon summing over q. �

Concerning this result, it should be noted that it was significant that Ns < Xt: this

is what permitted us to identify the most visited site of the random walk between times

s and t. If Ns ≥ Xt, then all knowledge of the most visited site between times s and t is

lost.

In our next result, we obtain an estimate for the joint distribution of Xs and Xt.

Proposition 2.3. Let 0 < s < t and 0 < a < b. Then

P(Xs ≤ a, Xt ≤ b) ≤ P(Xt ≤ a) + P(Xt = Ns) + P(Xs ≤ a) · P(Xt−s ≤ b).

Proof. Without loss of generality, we may assume that a and b are integers. Certainly

P(Xs ≤ a, Xt ≤ b) ≤ P(Xt ≤ a) + P(Xt = Ns) + P(Xs ≤ a, a < Xt ≤ b, Xt 6= Ns).
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However, if Xs < Xt, then there is a (random) time t0 ∈ (s, t] at which Xt0 = Nt0 .

Therefore, Xt ≥ Ns. Thus

P(Xs ≤ a, Xt ≤ b) ≤ P(Xt ≤ a) + P(Xt = Ns)+

+
b−1∑
m=0

P(Xs ≤ a, a < Xt ≤ b, Ns < Xt, Ns = m).

If 0 ≤ m ≤ a− 1, then, by Lemma 2.2, this summand can be estimated as follows:

P(Xs ≤ a, a < Xt ≤ b, Ns = m) ≤ P(Xs ≤ a, Ns = m) · P(Xt−s ≤ b).

Likewise, if a ≤ m ≤ b, then, by Lemma 2.2, this summand can be estimated as follows:

P(Xs ≤ a, m < Xt ≤ b, Ns = m) ≤ P(Xs ≤ a, Ns = m) · P(Xt−s ≤ b).

We obtain the desired result upon summing over m. �

Let

λ(x) =
{
x lnx+ 1− x for x > 0
1 for x = 0

.

Standard exponential Chebyshev’s inequality arguments can be used to show the following:

P(Nt ≥ tx) ≤ e−tλ(x) for x > 1(2.2a)

P(Nt ≤ tx) ≤ e−tλ(x) for 0 ≤ x < 1.(2.2b)

From this it is easy to obtain the following estimates:

Lemma 2.4. Let (Nt, t ≥ 0) be a rate one Poisson process. Then there exists a positive

constant c such that

(1) P(Nt ≥ t+ α
√
t) ≤ e−α2/4 for 0 ≤ α ≤

√
t/2.

(2) P(Nt ≥ t+ α
√
t) ≤ e−cα

√
t for α ≥

√
t/2.

(3) P(Nt ≤ t− α
√
t) ≤ e−α2/2 for α ≥ 0.

Proof. Throughout let x = 1 + α/
√
t. Consider (1): the case α = 0 is trivial; thus,

without loss of generality, assume that 0 < α ≤
√
t/2 and hence 1 < x ≤ 3/2. Since

ln(x) ≥ (x− 1)− (x− 1)2

2
for x ≥ 1,

we have λ(x) ≥ (x− 1)2/4 = α2/(4t); thus (1) follows from (2.2).
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The condition: α ≥
√
t/2 implies x ≥ 3/2. Since λ(x) is convex and λ(1) = 0, we

obtain λ(x) ≥ 2
3λ(3/2)(x − 1) for x ≥ 3/2. Letting c = 2λ(3/2)/3, we obtain (2) from

(2.1).

To verify (3), observe that Taylor’s theorem implies λ(x) ≥ (x− 1)2/2 for 0 ≤ x < 1 :

(3) follows immediately from (2.2). �

Next we calculate the rate with which Xt/t converges to the uniform measure on [0, 1].

Lemma 2.5.

(1) Let 0 ≤ α ≤ 1, then limt→∞ |P(Xt ≤ αt)− α| = 0.

(2) Let 0 < α∗ < 1, then, for all t sufficiently large,

sup
0≤α≤α∗

|P(Xt ≤ αt)− α| ≤
2
t
.

Remark 2.5.1. Lemma 2.5(1) shows that Xt/t converges in law to the uniform measure

on [0, 1]. Lemma 2.5(2) gives a uniform rate for this convergence for α bounded away

from 1. With more care, one can show that |P(Xt ≤ αt) − α| is uniformly bounded by

6t−1/3(ln t)1/3 for 0 ≤ α ≤ 1 and t sufficiently large. Since we will make no use of this

latter fact, we will not prove it here.

Proof. By Lemma 2.2, we have

P(Xt ≤ αt) = P(Xt ≤ bαtc)

= P(Nt ≤ bαtc) +
bαtc+ 1

t
P(Nt ≥ bαtc+ 2).

Thus

|P(Xt ≤ αt)− α| ≤
1
t

+ (1− α)P(Nt ≤ αt).

To verify (1), observe that the case α = 1 is trivial. If 0 ≤ α < 1, then (2.2) shows that

P(Nt ≤ αt) ≤ e−tλ(α) (with λ(α) > 0), which tends to zero as t → ∞ : this demonstrates

(1).

To establish (2), let α∗ be as given. If 0 ≤ α ≤ α∗, then, for all t sufficiently large,

P(Nt ≤ αt) ≤ P(Nt ≤ α∗t) ≤ e−tλ(α∗) ≤ 1
t
,

which demonstrates (2) and hence the lemma. �
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ψ be as in the statement of Theorem 1.1. In fact, we

will show that J(ψ) < ∞ implies P
(
Xt ≤ tψ(t), i.o.

)
= 0 whereas J(ψ) = ∞ implies

P
(
Xt ≤ tψ(t), i.o.

)
= 1. This suffices to prove the theorem. Indeed, suppose J(ψ) < ∞.

Then for any K > 0, J(Kψ) = KJ(ψ) <∞. Hence, we have shown that for all K > 0

lim inf
t→∞

Xt

tψ(t)
≥ K.

Letting K →∞, we see that J(ψ) <∞ implies that the above liminf is infinity. Likewise,

if J(ψ) =∞, so is J(εψ) = εJ(ψ), for any ε > 0. Hence we have shown that

lim inf
t→∞

Xt

tψ(t)
≤ ε.

The theorem is proved upon letting ε→ 0.

For j ≥ 1, let tj
∆= 2j and

Aj
∆={Xtj ≤ tjψ(tj)}.

By Lemma 2.5, for j sufficiently large, we have

|P(Aj)− ψ(tj)| ≤
1

2j−1
.

This, together with the inequalities

1
2
ψ(tj+1) ≤

∫ tj+1

tj

ψ(t)
t
dt ≤ ψ(tj),

demonstrates that
∑
j P(Aj),

∑
j ψ(tj) and J(ψ) converge or diverge simultaneously.

Suppose that
∑
j ψ(tj) converges. Let η(t) = 2ψ(2t) and let Bj = {Xtj ≤ tjη(tj)}.

Then the convergence of
∑
j η(tj) implies the convergence of

∑
j P(Bj). By the Borel-

Cantelli lemma, it follows that Xtj eventually exceeds tjη(tj) with probability one. As a

consequence, if tj ≤ t ≤ tj+1, then eventually

Xt ≥ Xtj > tjη(tj) = tj+1ψ(tj+1) ≥ tψ(t) a.s.

(where we have used the fact that t 7→ tψ(t) is increasing to obtain the last inequality).

Thus the convergence of J(ψ) implies P(Xt ≤ tψ(t), i.o.) = 0.
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If, however, J(ψ) diverges, then by the above considerations,
∑
j P(Aj) = ∞. Con-

sequently to show P(Aj , i.o.) = 1, by the Kochen-Stone lemma (see Kochen and Stone

(1964)) it suffices to demonstrate that

P(Aj ∩Ak) ≤ P(Aj)P(Ak) +R(j, k) for 1 ≤ j < k with(2.3a) ∑
1≤j<k≤n

R(j, k) = o
(
Σ2
n

)
as n→∞,(2.3b)

where

(2.3c) Σn
∆=

n∑
j=1

P(Aj).

By Proposition 2.3,

P(Aj ∩Ak) ≤ A(j, k) +B(j, k) + C(j, k),

where
A(j, k) ∆= P(Xtk ≤ tjψ(tj))

B(j, k) ∆= P(Ntj = Xtk)

C(j, k) ∆= P(Aj) · P(Xtk−tj ≤ tkψ(tk)).

By Lemma 2.5,

A(j, k) ≤ 2j−kψ(tj) + 21−k.

Therefore as n→∞, ∑
1≤j<k≤n

A(j, k) = o
(
Σ2
n

)
.

The term B(j, k) is quite small: with high probability Ntj is close to tj (deviations

from tj can be measured by Lemma 2.4). However, with small probability, Xtk will assume

a value in a neighborhood of tj (being, more or less, distributed uniformly in [0, tk]).

Precisely we have B(j, k) ≤ B1(j, k) +B2(j, k), where

B1(j, k) = P
(
Ntj ≤ tj − 2

√
tj ln tk

)
+ P

(
Ntj ≥ tj + 2

√
tj ln tk

)
B2(j, k) = P

(
tj − 2

√
tj ln tk ≤ Xtk ≤ tj + 2

√
tj ln tk

)
.

By Lemmas 2.4 and 2.5, we obtain the following:

B1(j, k) ≤ 1
4k

+
1
2k

+ exp
(
−c
√
tj ln tk

)
B2(j, k) ≤ 2j/2k + 1

2k−2
,
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which demonstrates that
∑

1≤j<k≤nB(j, k) is bounded as n→∞.
Finally, for j sufficiently large, we have

P(Xtk−tj ≤ tkψ(tk)) ≤ P(Ak) +
3

2k−j−1
.

Thus, eventually

C(j, k) ≤ P(Aj) · P(Ak) + P(Aj)
3

2k−j−1
.

Since
∑

1≤j<k≤n P(Aj)2j−k+1 = o(Σ2
n) as n → ∞, this implies (2.3), which proves the

Theorem in question. �

3. Proof of Theorem 1.3.

We shall begin this section with a lemma which will lead to the proof of Theorem 1.3.

Lemma 3.1. Let 1 ≤ α ≤
√
t. Then

P(Xt ≥ t+ α
√
t) =

α√
2πt

∫ ∞
α

x−2e−x
2/2dx + O

(
α2

t

)
.

Proof. Let k ∆=dt+ α
√
t e and observe that

P(Xt ≥ t+ α
√
t) = P(Xt ≥ k)

= P(Nt = k) +
(

1− k

t

)
P(Nt ≥ k + 1),

by an application of Lemma 2.1(2). We will estimate the first term on the right hand side

directly and the second term by the classical Berry-Esseen theorem.

Let δ ∆= k − t. By the Stirlings formula,

k! = (k/e)k
√

2πk · (1 + ε(k)),

where kε(k)→ 1/12 as k →∞ (see, e.g., Artin (1964), p. 24). Thus

(3.1) P(Nt = k) =
1√
2πk

(k/t)−keδ · (1 +O(1/t)).

Recall the following inequality: for x ≥ 0,

exp
(
−kx+ kx2/2− kx3/3

)
≤ (1 + x)−k ≤ exp

(
−kx+ kx2/2

)
.
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Therefore,

(k/t)−k = exp
(
−δ − δ2

2t

)
· (1 +O(δ/t)).

Also, we have
1√
k

=
1√
t
· (1 +O(δ/t)).

Inserting this into (3.1), we obtain the following:

P(Nt = k) =
1√
2πt

exp
(
−δ2

2t

)
· (1 +O(δ/t)).

However, δ = dt+ α
√
t e − t. Thus

exp
(
−δ2

2t

)
= exp

(
−α2

2

)
· (1 +O(α/

√
t)).

Consequently

(3.2) P(Nt = k) =
1√
2πt

exp
(
−α2

2

)
· (1 +O(α/

√
t)).

Let

Φ(b) ∆=
1√
2π

∫ ∞
b

e−x
2/2dx.

By the classical Berry-Esseen theorem (and some basic estimates), we have,

P(Nt ≥ k + 1) = Φ
(
(k + 1− t)/

√
t
)

+O(1/
√
t)

= Φ(α) +O(α/
√
t).

Moreover,
t− k
t

=
−α√
t

+O(1/t).

Hence
t− k
t
· P(Nt ≥ k + 1) =

−α√
t

Φ(α) +O(α2/t).

Finally, an integration by parts reveals:

Φ(α) =
1√
2πα

e−α
2/2 − 1√

2π

∫ ∞
α

x−2e−x
2/2dx.

Combining this with (3.2), we obtain

P(Xt ≥ t+ α
√
t) =

α√
2πt

∫ ∞
α

x−2e−x
2/2dx+O(α2/t),
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as was to be shown. �

Now we are prepared to prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 1.2 (proved in the next section) and a classical

argument of Erdős (1942), we can assume that

(3.3) (1.3)
√

ln ln t < ψ(t) < (1.5)
√

ln ln t

For all t ≥ 1, let

ψ0(t) ∆= max
{

1, ψ(t)− 7
ψ(t)

}
Observe that t 7→ ψ0(t) is nondecreasing and ψ0(t) ∼ ψ(t) as t→∞. From this and (3.3),

it follows that

(3.4)
√

ln ln t < ψ0(t) < 2
√

ln ln t

for all t sufficiently large. Moreover, for all t sufficiently large,

exp
(
− ψ2

0(t)
2

)
≤ C exp

(
− ψ2(t)

2

)
.

for some positive constant C. Consequently,

(3.5)
∫ ∞

1

exp
(
− ψ2

0(t)
2

)
dt

tψ0(t)
<∞.

Finally, for future reference, we point out that, for all t sufficiently large,

(3.6) ψ0(t) +
6

ψ0(t)
≤ ψ(t).

For each integer m ≥ 20, let

tm
∆=

m2

ln ln(m)

By the mean value theorem,

(3.7) tm+1 − tm ∼
2m

ln ln(m)

as m→∞. Observe that, for all m sufficiently large,∫ tm

tm−1

exp
(
− ψ2

0(t)
2

)
dt

tψ0(t)
≥ exp

(
− ψ2

0(tm)
2

)
(tm − tm−1)
tmψ0(tm)

≥ 1
mψ0(tm)

exp
(
− ψ2

0(tm)
2

)
(3.8)
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where we have used the fact that the integrand is nonincreasing and (3.7) to obtain the

first and second inequalities, respectively.

By L’Hôpital’s rule, as a→∞,∫ ∞
a

exp(−x2/2)x−2dx ∼ a−3 exp(−a2/2).

Therefore, by Lemma 3.1, there exist positive constants C1, C2, C3 and C4 such that

P(Xtm+1 ≥ tm+1 +
√
tm+1ψ0(tm)) ≤ C1

exp(−ψ2(tm)/2)√
tm+1ψ2

0(tm)
+ C2

ψ2
0(tm)
tm

≤ C3
exp(−ψ2

0(tm)/2)
mψ0(tm)

+ C4
(ln ln(m))2

m2
,

where we have used (3.4) and (3.7) to obtain the second inequality. By (3.5) and (3.8), it

follows that ∞∑
m=1

P(Xtm+1 ≥ tm+1 +
√
tm+1ψ0(tm)) <∞.

Consequently, by the easy half of the Borel–Cantelli lemma,

Xtm+1 ≤ tm+1 +
√
tm+1ψ0(tm)

on a set of full measure and for all m sufficiently large. However, by some algebra,

(3.9) tm+1 +
√
tm+1ψ0(tm) = tm +

√
tm
(
ψ0(tm) + rm

)
where

rm
∆=
tm+1 − tm√

tm
+
√
tm+1 −

√
tm√

tmψ0(tm)

=
tm+1 − tm√

tm
(1 + o(1)),

By (3.4) and (3.7), we have, for all m sufficiently large,

tm+1 − tm√
tm

<
5

ψ0(tm)
.

Consequently, rm < 6/ψ0(tm) for all m large enough. By inserting this into (3.9) and

recalling (3.6), we may conclude that with probability one

Xtm+1 ≤ tm +
√
tmψ(tm)

–13–



for all m sufficiently large. Finally, given tm < t ≤ tm+1, with probability one and for t

sufficiently large, we obtain:
Xt ≤ Xtm+1

≤ tm +
√
tmψ(tm)

≤ t+
√
tψ(t),

which is what we wished to show. �

4. Proof of Theorem 1.2.

As usual, the proof of such a theorem is divided up into upper bound and a lower bound

arguments. Since Xt ≤ Nt, the upper bound for the limsup, i.e.,

lim sup
t→∞

Xt − t√
2t ln ln t

≤ 1, a.s.

is a trivial consequence of the law of the iterated logarithm for N . It therefore remains to

prove the lower bound, i.e.,

(4.1) lim sup
t→∞

Xt − t√
2t ln ln t

≥ 1, a.s.

It is not too difficult to see that standard proofs for obtaining such lower bounds fail. In a

standard proof of the law of the iterated logarithm for, say, Brownian motion, one shows

that the lower bound is achieved along geometric subsequences: these subsequences are

sparse enough that the dependence amongst the samples is negligible. Let (tn) denote an

increasing sequence of real numbers and, for n ≥ 1, let

En
∆=
{
Xtn ≥ tn +

√
2tn ln ln(tn)

}
.

Lemma 3.1 shows that
∑
n P(En) <∞ whenever

∑
n t
−1/2
n <∞, which indicates that the

events in question are rare — so rare that any attempt at using the independence half of

the Borel–Cantelli lemma is bound to fail. Instead we shall prove (4.1) along a random

subsequence, (Tk). For this subsequence, (Tk), we will demonstrate that infinitely often

N(Tk) is large (in the sense of the LIL) and eventually N(Tk) = X(Tk).

With this strategy in mind, let us start with some definitions. Given L ∈ R1
+, define

τ(L) ∆= inf{t ≥ L : Nt −Nt−L = 0}.
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One of the main results of this section is Lemma 4.3, in which we obtain an exponential

lower bound for the random variable

Nτ(L) − τ(L)√
τ(L)

.

In preparation for this result, we will need some preliminary lemmas.

We begin by a process of “decimation”. More precisely, define for all k ≥ 1,

Dk
∆=
{
j2−k : j ∈ Z

}
.

Define stopping times,

τk(L) ∆= inf{t ∈ Dk ∩ [L,∞) : Nt −Nt−L = 0}.

Of course, τ(L) ≤ τk(L) and τk+1(L) ≤ τk(L), for all k ≥ 0. In fact, we have the following

strong convergence result:

Lemma 4.1. For each L > 0, with probability one,

lim
k→∞

τk(L) = τ(L).

Proof. Let ε > 0 be fixed. Choose k large enough that 2−k < ε. Then, by the strong

Marov property, we obtain:

P
(
|τ(L)− τk(L)| > ε) ≤ P

(
N2−k > 0

)
.

Since P
(
N2−k > 0

)
∼ 2−k, it follows that

∞∑
k=1

P
(
|τ(L)− τk(L)| > ε

)
<∞.

The proof is completed by an application of the easy half of the Borel–Cantelli lemma and

letting ε ↓ 0 along a countable sequence. �

Our next lemma is a modification of a moderate deviation inequality, which we state

without proof (see, e.g., Feller (1971), p. 552).
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Lemma 4.2. Given A ∈ (0, 1) there exist x0 = x0(A) > 0, η = η(A) > 0 and ρ = ρ(A) >

0, such that for every L > 0, x ∈ [x0, ρt
1/6] and t ≥ ηL2,

P
(
Nt−L ≥ t+

√
tx
)
≥ 1

2
exp

(
− x2

2A

)
.

Our next lemma shows that such an inequality can be obtained for the stopped Poisson

process, Nτ(L).

Lemma 4.3. Fix A ∈ (0, 1) and L > 0. For x0, η and ρ as given by Lemma 4.2, let

γ
∆=
(
ηL2

)
∨
(
x/ρ

)6
. Then for all such L > 0 and all x ≥ x0,

P
(
Nτ(L) ≥ τ(L) +

√
τ(L)x

)
≥ 1

2
P
(
τ(L) ≥ γ

)
exp

(
− x2

2A

)
.

Proof. We begin by recalling some facts about associated random variables. Follow-

ing Esary, Proschan and Walkup (1967), we say that a collection of random variables,

Y1, · · · , Yn is associated if

Cov
(
f(Y1, · · · , Yn), g(Y1, · · · , Yn)

)
≥ 0,

where f and g are any two measurable coordinatewise nondecreasing functions mapping

Rn into R (provided the covariance is defined). In Esary, Proschan and Walkup (1967), it is

shown that independent random variables are associated. Thus, by direct application of the

definition, nonnegative linear combinations of a collection of independent random variables

are associated. Consequently, a finite collection of (possibly overlapping) increments of

a Poisson process is associated. Whenever the collection Y, Y1, · · · , Yn is associated, by

choosing f and g to be appropriate indicator functions, we obtain

(4.2) P
(
Y ≥ a, Y1 ≥ a1, · · · , Yn ≥ an

)
≥ P

(
Y ≥ a

)
P
(
Y1 ≥ a1, · · · , Yn ≥ an

)
.

First, we will establish the desired inequality for τk(L). Then we will take limits as

k →∞. With this in mind, let t ∈ Dk with t > γ ∨ L. Define the measurable event

Ft
∆=
{
Ns −Ns−L ≥ 1 if s ∈ Dk ∩ [L, t− L)

}
∩
{
Nt−L −Ns−L ≥ 1 if s ∈ Dk ∩ [t− L, t)

}
.

= {τk(L) ≥ t}
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We note that, {
τk(L) = t

}
= Ft ∩

{
Nt −Nt−L = 0

}
.

Furthermore, on the event {τk(L) = t}, we have Nt = Nt−L. Finally, the events {Nt−L ≥
t+
√
tx} and Ft are independent of {Nt −Nt−L = 0}. Consequently

P
(
Nt ≥ t+

√
tx | τk(L) = t

)
= P

(
Nt−L ≥ t+

√
tx | Ft

)
.

However, from (4.2) it follows that,

P
(
Nt−L ≥ t+

√
tx | Ft

)
≥ P

(
Nt−L ≥ t+

√
tx
)
.

From Lemma 4.2, by our choice of γ, this last probability is bounded below by (1/2) exp
(
−

x2/(2A)
)
. Thus, by the law of total probability, we arrive at the following estimate:

(4.3) P
(
Nτk(L) ≥ τk(L) +

√
τk(L) x

)
≥ 1

2
P
(
τk(L) ≥ γ

)
exp

(
− x2

2A

)
.

By Lemma 3, τk(L) ↓ τ(L), a.s. as k →∞. Since the Poisson process is right continuous,

the proof of this lemma is completed upon taking limits in (4.3) as k →∞. �

In the next lemma, we give the momment generating function of τ(L).

Lemma 4.4.

(1) For all λ > −1,

E exp
(
− λτ(L)

)
=

(λ+ 1)e−λL

λeL + e−λL
.

(2) Eτ(L) = eL.

(3) There exists some C > 0 (not depending on L), such that for all a ≥ 1,

P
(
τ(L) ≤ a

)
≤ Cae−L.

Proof. The proof of (1) is based on a technique for the study of patterns connected

with repeated trials as developed in Ch.XIII, §7 and §8 of Feller (1971). For simplicity, let

τ
∆= τ(L) and for t ≥ L define

Et
∆=
{
ω : Nt −Nt−L = 0

}
.
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By the law of total probability,

P(Et) =
∫ t

L

P(Et | τ = s)P(τ ∈ ds).

If L ≤ s < t− L, by independence,

P(Et | τ = s) = P(Et) = P(NL = 0) = e−L.

Otherwise, we obtain

P(Et | τ = s) = P(Nt −Ns = 0, Ns −Nt−L = 0 | τ = s)

= e−(t−s).

Since P(Et) = exp(−L), we arrive at the formula,

(4.4) 1 = P(τ ≤ t− L) +
∫ t

t−L
exp

(
L+ (t− s)

)
P(τ ∈ ds).

Define a function, g, by

g(u) ∆=

 exp(L− u), if 0 ≤ u < L
1, if u ≥ L
0, if u < 0

.

By (4.4), for all t ≥ L, we have

(4.5)
∫ ∞
−∞

g(t− s)P(τ ∈ ds) = 1.

On the other hand, if t < L, we have

(4.6)
∫ ∞
−∞

g(t− s)P(τ ∈ ds) = 0.

Let H(t) = 1[L,∞)(t) be the indicator function of [L,∞). Then we have shown in (4.5) and

(4.6) that H is a certain convolution. In particular,

H(t) =
∫ ∞
−∞

g(t− s)P(τ ∈ ds).

Therefore

H̃(λ) = g̃(λ)E exp
(
− λτ

)
,
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where for any positive function, F , F̃ denotes the Laplace transform:
∫
e−λtF (t)dt. Since

for all λ > −1,
H̃(λ) = λ−1 exp

(
− λL

)
,

g̃(λ) =
λeL + e−λL

(λ+ 1)λ
,

we obtain the Laplace transform of τ by solving. Equation (2) follows by differentiating

this transform and setting λ to zero. To prove (3), we use Chebyhev’s inequality, viz.

P(τ ≤ a) = P
(

exp(1− τ/a) ≥ 1
)

≤ e (1 + a−1)e−L/a

a−1eL + e−L/a

≤ 2ea exp(−L).

Taking C
∆= 2e, we arrive at (3). In the above, we have used the inequalities: 0 ≤

exp(−L/a) ≤ 1 and a+ 1 ≤ 2a for a ≥ 1.

Remark 4.4.1. A by–product of Lemma 4.4(1) is that as L → ∞, e−Lτ(L) converges

weakly to a mean one exponential distribution. We shall have no need for this fact.

Let t1
∆= 1 and for k ≥ 2, define tk

∆= tk−1 + 4 ln k. We point out the elementary fact

that as k →∞, tk ∼ 4k ln k. Next we define a family of stopping times, Tk: let

T1
∆= ∆T1

∆= inf
{
t ≥ t1 : Nt −Nt−t1 = 0

}
.

For k ≥ 2, let

Tk
∆= inf

{
t ≥ Tk−1 + tk : Nt −Nt−tk = 0

}
and ∆Tk

∆=Tk − Tk−1.

By the strong Markov property, {∆Tk; k ≥ 1} is an independent sequence of random

variables with ∆Tk distributed as τ(tk). Since Tk =
∑k
j=1 ∆Tj , by Lemma 4.4(2)

ETk =
k∑
j=1

exp(tj),

from which it is easy to verify that ETk ∼ exp(tk) as k →∞.
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Lemma 4.5. With probability one,

(1) limk→∞
(
Tk−1/Tk

)
= 0;

(2) limk→∞
(

ln lnTk/ ln ln ETk
)

= 1;

(3) XTk
= NTk

, eventually.

Proof. Let ak
∆= k2 exp

(
tk−1

)
and let ε > 0 be fixed. Then

P
(
Tk−1 ≥ εTk

)
≤ P

(
Tk−1 ≥ εak

)
+ P

(
Tk ≤ ak

)
.

By Chebychev’s inequality and the remarks preceding the statement of the lemma,

P
(
Tk−1 ≥ εak

)
≤ ETk−1

εak
∼ exp(tk−1)

εak
.

Thus, there exists some C1 > 0 such that

P
(
Tk−1 ≥ εak

)
≤ C1k

−2.

Let us observe that a−1
k exp(tk) = k2. Therefore, by Lemma 4.4(3),

P
(
Tk ≤ ak) ≤ P

(
∆Tk ≤ ak

)
≤ Ck−2.

This shows that
∑
k P(Tk−1 ≥ εTk) < ∞. Thus (1) follows from the easy half of the

Borel–Cantelli lemma.

To establish (2), we note that ln ln ETk ∼ ln tk, as k →∞. Let ε ∈ (0, 1) be fixed. By

Lemma 4.4(3), we obtain:

P
(

ln lnTk ≥ (1 + ε) ln ln tk
)

= P
(
Tk ≥ exp(t1+ε

k )
)

≤ ETk exp
(
− t1+ε

k

)
≤ 2 exp

(
tk − t1+ε

k

)
,(4.7)

for all k sufficiently large. Likewise, since ∆Tk ≤ Tk,

(4.8) P
(

ln lnTk ≤ (1− ε) ln tk
)
≤ C exp

(
t1−εk − tk

)
.

Since the right hand side of (4.7) and (4.8) are both summable in k, (2) follows from the

easy half of the Borel–Cantelli lemma.

–20–



It remains to prove (3). First let us note that X(Tk) = N(Tj) for some 1 ≤ j ≤ k.

Thus

P (X(Tk) 6= N(Tk)) =
k−1∑
j=1

P (X(Tk) = N(Tj)).

If X(Tk) = N(Tj), then this would imply N((tk − tj) + Tj) − N(Tj) = 0. Thus, by the

strong Markov property,

P (X(Tk) = N(Tj)) ≤ exp
(
− (tk − tj)

)
.

Consequently,

P (X(Tk) 6= N(Tk)) ≤ exp
(
− (tk − tk−1)

) k−1∑
j=1

exp
(
(tj − tk−1)

)
.

But tk− tk−1 = 4 ln(k) and each summand is dominated by 1, so we arrive at the estimate:

P (X(Tk) 6= N(Tk)) ≤ 1
k3
,

which certainly sums in k. The proof is finished by an application of the easy-half of the

Borel-Cantelli lemma. �

We are now ready to prove Theorem 1.2. Let p ∈ (0, 1) be fixed. For every k ≥ 1,

define the event

Ak
∆=
{
ω : NTk

−NTk−1 −∆Tk ≥ p
√

2∆Tk ln k
}
.

We will show that P
(
Ak, i.o.

)
= 1. By the strong Markov property, (Ak) are independent.

Consequently, it is sufficient to prove that
∑
k P(Ak) =∞.

For each k ≥ 1, let Sk
∆= τ(tk). By the strong Markov property,

P(Ak) = P
(
NSk

− Sk ≥ p
√

2Sk ln k
)
.

Let A ∆= p2 and γk
∆=
(
ηt2k
)
∨
(
p
√

2 ln k/ρ
)6. By Lemma 4.3, we have

P(Ak) ≥ P(Sk ≥ γk)/2k.

It is easy to check that limk P(Sk ≥ γk) = 1. Therefore, we have shown that
∑
l P(Ak) =∞

and hence that P(Ak, i.o.) = 1. It follows that

lim sup
k→∞

NTk
−NTk−1 −∆Tk√

2∆Tk ln k
≥ 1, a.s.
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By Lemma 4.5, with probability one, as k →∞,

√
2∆Tk ln k ∼

√
2Tk ln lnTk,

and
Tk−1 ln lnTk−1

Tk ln lnTk
→ 0.

Therefore, by the ordinary law of the iterated logarithm for N ,

lim
k→∞

NTk−1 − Tk−1√
2Tk ln lnTk

= 0, a.s.

Hence, we have shown the following:

lim sup
k→∞

NTk
− Tk√

2Tk ln lnTk
≥ 1, a.s.

Finally, by Lemma 4.5(3), we are done. �
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