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1. Introduction

Let X(1), X(2) and Y be independent standard Brownian motions starting from 0. Define
a Brownian motion, X, on the line as follows:

X(t) ∆=
{
X(1)(t) if t ≥ 0
X(2)(−t) if t < 0

.

The iterated Brownian motion or iterated Wiener process, Z, is defined by setting
Z(t) ∆=X(Y (t)) for all t ≥ 0. Iterated Brownian motions arise naturally in a variety of
problems in probability and mathematical statistics. For example, Funaki [F] used a
modification of Z to give a probabilistic solution to the partial differential equation

∂4u

∂x4
=

1
8
∂u

∂t
with u(0, x) = u0(x),

while Deheuvels and Mason [DH] introduced iterated Brownian motions in their study of
the Bahadur–Kiefer process. Recent attention has centered on the path properties of Z.
Burdzy [Bu1, Bu2] established the following local law of the iterated logarithm:

(1.1) lim sup
t→0

Z(t)
t1/4(ln ln(1/t))3/4

=
25/4

33/4
, a.s..

Other notable results in this vein are: the functional form of (1.1) [HPS]; Chung’s form
of the law of the iterated logarithm [HPS] and [KL]; a characterization of the lower limits
[S]; a characterization of the upper limits (via a connection with the stable subordinator
of index 1/4) [Be]; various global Strassen–type theorems [CsCsFR1]; a study of the local
time [CsCsFR2]; the Csörgő–Révész modulus of non-differentibility [HS]. (Some of the
techniques of the present paper have played an important rôle in the analysis of [HS].)

Viewing (1.1) as the modulus of continuity of Z at 0, Burdzy (private communication)
has asked whether one can find the uniform modulus of continuity for Z. The sole goal of
this article is to answer this question. To this end define for all δ ∈ (0, 1),

ω(δ) ∆= sup
0≤s,t≤1

sup
0≤|s−t|≤δ

|Z(s)− Z(t)|

ψ(δ) ∆= δ1/4
(
ln(1/δ)

)3/4
.

Our theorem is the following:
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Theorem 1. With probability one,

lim
δ→0

ω(δ)
ψ(δ)

= 1.

If we liberally estimate the modulus of Z by composing the modulus of X with that
of Y, then, by the well–known result of Paul Lévy (see p. 114 of [KS]), we obtain:

(1.2) lim sup
δ→0

ω(δ)/ψ(δ) ≤ 21/4, a.s.

Since 21/4 > 1, Theorem 1 shows that this simple argument yields the correct rate, but
is not precise enough to anticipate the constant 1. This, of course, is not unexpected,
since the method outlined above is rather crude. What is surprising is that known general
techniques, e.g., metric entropy and majorizing measures, are not refined enough to prove
the upper bound in Theorem 1. Indeed, some estimates of Burdzy [Bu1] can be used to
show that there exists K > 0, such that for all t, ε > 0 and x > 1,

P
(
|Z(t+ ε)− Z(t)| ≥ ε1/4x

)
≤ K exp

(
− χx4/3

)
,

where χ ∆=25/3 ·3−1.With this probability estimate and a direct imitation of Levy’s uniform
modulus argument for Brownian motion, one can at best obtain the following:

lim sup
δ→0

ω(δ)
ψ(δ)

≤ χ3/4, a.s.

Since χ3/4 ≈ 1.043 > 1, even the upper bound (which is usually the easier half of such
results) requires very new ideas. Our innovation is an analysis of IBM through the ex-
cursions of Y from the fast points of X. To this end, one of the key results used is the
Ray–Knight theorem (see the proof of Lemma 2.1).

2. Preliminaries

Throughout, we shall use generic constants K, K1 and K2; these may change from line
to line (but not within the same line). Given positive functions f and g, we will write
f(t) ∼ g(t) as t→ a to mean limt→a f(t)/g(t) = 1.

Next we define two classes of stopping times for the Brownian motion, Y . For a > 0
and b ∈ R, let

τa = τ(a) ∆= inf{t > 0 : |Yt| = a},

σb = σ(b) ∆= inf{t > 0 : Yt = b}.
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By Brownian scaling, a−2τ(a) and b−2σ(b) have the same distributions as τ(1) and
σ(1), respectively. We need the following well–known estimate for the small–ball proba-
bility of σ(1) (see, e.g., p. 80 of [KS]): as t→ 0,

(2.1) P (σ(1) ≤ t) ∼ Kt1/2 exp
(
− 1

2t

)
.

By the symmetry of Y ,

P (σ(1) ≤ t) ≤ P (τ(1) ≤ t) ≤ 2P (σ(1) ≤ t).

Therefore (2.1) implies the following:

(2.2) K1t
1/2 exp

(
− 1

2t

)
≤ P (τ(1) ≤ t) ≤ K2t

1/2 exp
(
− 1

2t

)
,

for all t ≤ 1 and an appropriate choice of K1 and K2. Finally, by a theorem of Chung (see
p. 221 of [C]), as s→∞,

(2.3) P (τ(1) ≥ s) ∼ K exp
(
− π2

8
s

)
.

Fixing an R > 1, let Dn
∆={kR−n : k ∈ Z} and rk,n

∆= kR−n, for all integers k, n ≥ 1.
Let T0,n

∆=0 and iteratively define for n, j ≥ 1,

Tj,n
∆= inf

{
s > Tj−1,n : Y (s) ∈ Dn \ {Y (Tj−1,n)}

}
,

∆Tj,n
∆=Tj,n − Tj−1,n.

For integers k, n ≥ 1, let us define the following sets of random indices:

Ek,n
∆=

{
j ≥ 1 : Y (Tj−1,n) = rk−1,n, Y (Tj,n) = rk,n and Tj,n ≤ 1

}
,

Êk,n
∆=

{
j ≥ 1 : Y (Tj,n) = rk,n and Tj,n ≤ 1

}
.

We point out that the cardinality of Ek,n (denoted by #Ek,n) is the number of times
Y upcrosses [rk−1,n, rk,n] before time 1.

Our next two lemmas are the most important of this section. In our first calculation,
we demonstrate that with high probability, Y upcrosses a significant number of the intervals
[rk−1,n, rk,n] a uniform number of times before time 1.
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Lemma 2.1. Fix 0 < θ < ζ < 1. Then there exists some K = K(θ, ζ, R) > 0, such that

for all integers k, n ≥ 1,

P
(
#Ek,n ≤ Rn(1−ζ) for some k ≤ Rn(1−2θ)

)
≤ Kn−2.

Proof. Throughout, Lx
t will denote the local time in x of a standard Brownian motion.

For simplicity, set pn
∆=R−nθ and Mn

∆=Rn(1−2θ) and define the following events:

Ω0
∆=

{
#Ek,n ≤ Rn(1−ζ) for some k ≤Mn

}
Ω1

∆=
{

4Lrk,n

1 ≥ R−nζ for all 0 ≤ k ≤Mn

}
.

It will suffice to demonstrate that P (Ωc
1) and P (Ω0 ∩ Ω1) are both bounded by Kn−2.

Clearly,
P (Ωc

1) ≤ P (σ(pn) ≥ 1) + P (Ωc
1, σ(pn) ≤ 1)

∆= I + II,

notation being obvious. Now, I is easily estimated: indeed, by the reflection principle,

I = P ( max
0≤s≤1

Ys ≤ pn) = P (|Y1| ≤ pn) ≤ Kpn,

since |Y1| has a bounded density. Next we estimate II. Note that k ≤ Mn implies that
rk,n ≤ p2

n. Since σ(pn) ≤ 1 and t 7→ Lx
t is nondecreasing, we obtain the bounds:

II ≤ P
(

inf
0≤rk,n≤p2

n

L
rk,n

σ(pn) ≤
1
4R

−nζ
)

≤ P
(

inf
0≤x≤p2

n

Lx
σ(pn) ≤ 1

4R
−nζ

)
= P

(
inf

0≤x≤pn

Lx
σ(1) ≤ 1

4R
−n(ζ−θ)

)
,

where we have used scaling to obtain this last equality. Since σ(1) is the first time Y hits
1, it follows from the first Ray–Knight theorem (see Revuz and Yor [RY, Thm. 2.2, Ch.
XI]) that there exists a two–dimensional Brownian motion, B, such that B(0) = 0 and
L1−x

σ(1) = |B(x)|2 for all 0 ≤ x ≤ 1. Therefore

II ≤ P
(

inf
1−pn≤x≤1

|B(x)| ≤ 2R−n(ζ−θ)/2
)
.
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This last probability can be estimated as follows: let en
∆=(0, 1/n) ∈ R2. By the strong

Markov property and a coupling argument, II is bounded above by

P
(
|B(1− pn)| ≤ n−1

)
+ P

(
inf

0≤x≤pn

|B(x)| ≤ 2R−n(ζ−θ)/2|B(0) = en

)
≤ Kn−2 + P

(
sup

0≤x≤pn

|B(x)| ≥ n−1 − 2R−n(ζ−θ)/2|B(0) = 0
)

≤ Kn−2 + P
(

sup
0≤x≤pn

|B(x)| ≥ (2n)−1|B(0) = 0
)

(for all large n)

= Kn−2 + P
(

sup
0≤x≤1

|B(x)| ≥ (2n)−1 ·Rnθ/2
)

≤ Kn−2 + 2nR−nθ/2E sup
0≤x≤1

|B(x)|

≤ Kn−2,

by Chebychev’s inequality and the fact that E sup0≤x≤1 |B(x)| <∞.
In light of the above development, we are left to estimate P (Ω0∩Ω1). To do so, observe

that {
Ω0 ∩ Ω1

}
⊆

⋃
0≤k≤Mn

{
2R−n#Ek,n ≤ (1/2)Lrk,n

1

}
.

As a consequence of the estimates leading to (5.5) of [K], P
(
Ω0∩Ω1) is bounded above by,

K1

(
n lnR

)−1/2
R−3n + P

(
sup

x
Lx

1 ≤ 16n2R−2n(lnR)2
)
.

To see this, take (in the notation of [K]), θ = 4, ζ = 1 and R = 1. You will see that K1

above is the same as C5(4, 1, 1). Since L0
1 has the same distribution as |Y (1)|, it has a

bounded density. Hence, we certainly have, P (Ω0 ∩Ω1) ≤ Kn−2, which is what we wished
to show �

In our next lemma, we show that the embedded random walk, {Y (Tj,n), j ≥ 0}, does
not hit an excessive number of points in Dn before time 1. Furthermore, we show that no
point in Dn gets hit too many times before time 1.

Lemma 2.2. Let θ, ζ ∈ (0, 1). Then there exists some K = K(R, θ, ζ) > 0 such that for

all integers n ≥ 1,

(1) P (τ(Rnθ) ≤ 1) ≤ KR−nθ exp(−R2nθ/2)
(2) P

( ⋃
k∈Z{#Êk,n > Rn(1+ζ)}

)
is dominated by

K1R
−nθ exp(−R2nθ/2) +K2 exp(−Rnζ) +K3R

n(1+θ−ζ/2) exp(−Rnζ/2).

Proof. We obtain (1) by (2.2) and scaling. Next we prove (2).
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Let j = j(n) ∆=[Rn(2+ζ)]. Observe that

P
( ⋃

k∈Z
{#Êk,n > Rn(1+ζ)}

)
is dominated by

P (τ(Rnθ) ≤ 1) + P (Tj,n ≤ 1) +KRn(1+θ)P (ξ(0, j(n)) > Rn(1+ζ)),

where ξ(0, ·) denotes the local time at 0 of a one-dimensional simple symmetric random
walk. The first term has already been considered, and is given by (1).

To estimate the second term, we will need the Laplace transform of τa (see, for exam-
ple, p. 67 of [RY]):

(2.4) E
(
exp(−λτa)

)
=

(
cosh(a

√
2λ)

)−1
.

Observe Tj,n = ∆T1,n + · · · + ∆Tj,n can be written as the sum of j(n) independent and
identically distributed random variables, where ∆T1,n has the same distribution as τ(R−n).
Thus, by Chebyshev’s inequality and (2.4), we obtain the following:

P (Tj,n ≤ 1) ≤ e

(
E (exp(−∆T1,n))

)j(n)

= e
(
cosh(R−n

√
2)

)−j(n)
.

Since cosh(x) ≥ 1 + x2/2, ζ < 1 and ln(1 + x) ≥ x− x2/2 for x ≥ 0, it follows that

(2.5) P (Tj,n ≤ 1) ≤ K exp(−Rnζ).

Finally,
P (ξ(0, j(n)) > Rn(1+ζ)) = P (j(n)−1/2ξ(0, j(n)) > Rnζ/2)

≤ KR−nζ/2 exp(−Rnζ/2),

for all n sufficiently large, where we have used Bernstein’s inequality or Chernoff’s form
of the large deviation estimate for the simple symmetric random walk and the fact that
ξ(0, n) has the same law as the absolute value of the simple symmetric random walk by
time n (see, e.g., p. 14 and p. 95 of [R]). �

Our next lemma provides a uniform upper bound on the spacings {∆Ti,n} when
Ti,n ≤ 1.

Lemma 2.3. Let ζ > 0. Then there exist constants K` = K`(R, ζ) > 0 (` = 1, 2), such

that for all integers i, n ≥ 1,

P (∆Ti,n ≥ n2R−2nfor some Ti,n ≤ 1) ≤ K1 exp(−Rnζ) +K2R
n(2+ζ) exp(−π2n2/8).
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Proof. As in the proof of Lemma 2.2, let j = j(n) ∆=[Rn(2+ζ)]. Then the probability in
question is dominated by

(2.6) P (Tj,n ≤ 1) + j(n)P (∆T1,n ≥ n2R−2n).

Using (2.5) to estimate the first term, it remains to bound the second term. By the strong
Markov property and Brownian scaling,

P
(
∆T1,n ≥ n2R−2n

)
= P

(
τ(R−n) ≥ n2R−2n

)
= P

(
τ(1) ≥ n2

)
.

The result follows from (2.3) and (2.6). �

3. The proof of the lower bound

Define for all x ∈ (0, 1),

F (x) ∆=
√
x ln(1/x),

G(x) ∆=x2
(
ln(1/x)

)−1
.

Throughout, γ and α will denote real numbers satisfying: 1/4 < γ < 1/2 and

0 < α <
√

4− γ−1.

Given γ and α, let θ and ζ be chosen so that 0 < θ < ζ < 1 and

2− α2

2
− 1

2γ
> ζ + 2θ.

For convenience, let

(3.1) q
∆=2− 2θ − ζ − α2

2
− 1

2γ
> 0.

For all n ≥ 1 and k ∈ Z, let us define the following random variables and events:

∆Xk,n = X(rk,n)−X(rk−1,n)

Ak,n
∆=

{
|∆Xk,n| ≥ αF (R−n)

}
,

Bk,n
∆=

{
∆Tj,n ≤ γG(R−n) for some j ∈ Ek,n

}
,

Ck,n
∆=Ak,n ∩Bk,n.
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Our goal is to show that at least one of the Ck,n occurs for some index k with Tk,n ≤ 1,
almost surely and for all n sufficiently large. To this end, our first goal is to establish the
following: for all α, γ, θ and ζ satisfying (3.1), we have

∞∑
n=1

P
( ⋂
{k:Tk,n≤1}

(
Ck,n

)c
)
<∞.

For each k, n ≥ 1, let us define the set of random indices:

Ek,n
∆={j ≥ 1 : Y (Tj−1,n) = rk−1,n, Y (Tj,n) = rk,n}.

Thus Ek,n is the set of indices j that correspond to upcrossings of the interval [rk−1,n, rk,n].
This is distinguished from Ek,n in that we have no restrictions on time. For 0 ≤ k ≤
[Rn(1−2θ)], define the measurable event,

Bk,n
∆=

{
∆Tj,n > γG(R−n) for the first [Rn(1−ζ)] elements of Ek,n

}
.

In words, this is the event that the time for each of the the first [Rn(1−ζ)] upcrossings of
the interval [rk−1,n, rk,n] by Y exceeds γG(R−n). We observe that

Bc
k,n ∩

{
#Ek,n > Rn(1−ζ) for all 0 ≤ k ≤ Rn(1−2θ)

}
⊂ Bk,n.

By the strong Markov property, the events
{
Ac

k,n ∪ Bk,n, 0 ≤ k ≤ Rn(1−2θ)
}

are indepen-
dent and

P
(
Ac

k,n ∪ Bk,n

)
= P

(
Ac

1,n ∪ B1,n

)
.

These considerations lead us to the estimate:

P
( ⋂
{k:Tk,n≤1}

(
Ck,n

)c
)
≤ P

(
#Ek,n ≤ Rn(1−ζ) for some k ≤ Rn(1−2θ)

)
+ P

( ⋂
k≤Rn(1−2θ)

(
Ac

k,n ∪ Bk,n

))
,

≤ K · n−2 + P
( ⋂

k≤Rn(1−2θ)

(
Ac

k,n ∪ Bk,n

))
,(3.2)

by Lemma 2.1. Since the events Ak,n and Bk,n are independent,

P
( ⋂

k≤Rn(1−2θ)

(
Ac

k,n ∪ Bk,n

))
≤

(
1− P (A1,n)P (Bc

1,n)
)[Rn(1−2θ)]

≤ exp
(
− [Rn(1−2θ)]P

(
A1,n

)
P

(
Bc

1,n

))
.(3.3)
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By scaling and a standard calculation, we readily obtain:

(3.4) P (A1,n) = P
(
|X(1)| ≥ αRn/2F (R−n)

)
≥ Kn−1/2R−nα2/2.

By the strong Markov property and (2.2),

P
(
Bc

1,n

)
= 1−

(
1− P

(
∆T1,n ≤ γG(R−n)

))[Rn(1−ζ)]

≥ 1−
(
1−Kn−1/2R−n/(2γ)

)[Rn(1−ζ)]

≥ Kn−1/2Rn
(
1−ζ−1/(2γ)

)
,(3.5)

since, by definition, (2γ)−1 > 1− ζ.

Recalling the definition of q > 0 from (3.1), we see from (3.3), (3.4) and (3.5) that

P
( ⋂

k≤Rn(1−2θ)

(
Ac

k,n ∪ Bk,n

))
≤ exp

(
−Kn−1Rnq

)
.

Hence, from (3.2) we obtain the estimate:

P
( ⋂
{k:Tk,n≤1}

(
Ck,n

)c
)
≤ K1n

−2 + exp
(
−K2n

−1Rnq
)
,

which certainly sums.
By the Borel–Cantelli lemma there exists an an N0 such that for all n ≥ N0 there

exists k = k(n) such that

(3.6) |∆Xk,n| ≥ αF (R−n) and ∆Tk,n ≤ γG(R−n)

on a set of full measure. We point out the elementary fact that G(·) is invertible on (0, 1)
and that F (G−1(x)) ∼ 2−3/4ψ(x) as x → 0+, where G−1 is the inverse function to G.
Moreover the following asymptotic relationships are easily verified:

F (R−n) ∼ R−1/2F (R−n+1) as n→∞;

F (R−n+1) = F (G−1(G(R−n+1))) ∼ 2−3/4 · ψ(G(R−n+1)) as n→∞;

ψ(x) ∼ γ−1/4ψ(γx) as x→ 0+.

Given any ε > 0, from these considerations and (3.6) it follows that there almost surely
exists an N1 ≥ N0 such that for all n ≥ N1 there exists a k = k(n) for which

∆Xk,n ≥ (1− ε)2−3/4αγ−1/4R−1/2ψ(γG(R−n+1)) and ∆Tk,n ≤ γG(R−n).
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Since ∆Xk,n = Z(Tk,n)− Z(Tk−1,n), then for any n ≥ N1 we have

ω(γG(R−n)) ≥ (1− ε)2−3/4αγ−1/4R−1/2ψ(γG(R−n+1)).

For any δ > 0 small enough, there exists n ≥ N1 such that

γG(R−(n+1)) ≤ δ ≤ γG(R−n).

By monotonicity, for such a δ,

ω(δ) ≥ ω
(
γG(R−(n+1))

)
≥ (1− ε)2−3/4αγ−1/4R−1/2ψ(γG(R−n))

≥ (1− ε)2−3/4αγ−1/4R−1/2ψ(δ).

Therefore,

lim inf
δ→0

ω(δ)
ψ(δ)

≥ (1− ε)2−3/4αγ−1/4R−1/2, a.s..

Let ε ↓ 0 and R ↓ 1 to obtain the following:

lim inf
δ→0

ω(δ)
ψ(δ)

≥ 2−3/4αγ−1/4, a.s..

Let θ, ζ ↓ 0, γ → 1/2 and α→
√

2 to obtain the promised lower bound. �

4. The proof of the upper bound

Throughout let R > 1, θ, ζ, q ∈ (0, 1). We will continue to use the notation developed in
Section 2, significantly the family of stopping times {Ti,n}.

First we will need some technical definitions. Let I ∆=[a, b] denote a generic closed
interval with endpoints in Dn and let |I| ∆= b− a denote its length. For α ≥ 0, we say that
I is α–fast (written I ∈ Fα) provided that

|X(b)−X(a)| ≥ αF (|I|).

By a standard Brownian motion calculation, there exists some K = K(R,α) > 0 such that
for any interval, I ⊆ R1

+,

(4.1) P
(
I ∈ Fα

)
∼ K(log(|I|−1))−1/2|I|α

2/2 as |I| → 0.

We will call a pair of stopping times (Ti,n, Tl,n) (with j < l) a crossing of I provided
that either
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(i) Y (Ti,n) = a, Y (Tl,n) = b and Y (Tk,n) < b for all indices k satisfying j < k < l; or

(ii) Y (Ti,n) = b, Y (Tl,n) = a and Y (Tk,n) > a for all indices k satisfying j < k < l.

Corresponding to a crossing (Ti,n, Tl,n) of I, we define the crossing time of I as simply
Tl,n − Ti,n.

We will need the following collection of intervals: for n ≥ 1 and 1 ≤ j ≤ n let

Ij,n
∆={[rk,n, rk+j,n] : |k| ≤ Rn(1+θ) + 1}.

Finally, for 0 ≤ α < 2 let

(4.3) γ = γ(α) ∆=
1

4− α2 + 2q + 2θ + 2ζ
.

For future reference, we note that

(4.4) q
∆=

α2

2
+

1
2γ

− 2− ζ − θ > 0.

Let An be the event that before time 1 at least one interval of the form [rk,n, rk+j,n]
(with 1 ≤ j ≤ n) which is in Fα is crossed in time less than γG(jR−n) by Y . Likewise, for
n ≥ 1 and 1 ≤ j ≤ n, let Aj,n denote the event that at least one of the intervals from Ij,n

which is in Fα is crossed in time less than γG(jR−n) by one of the first Rn(1+ζ) crossings
of that interval.

Let l < k be integers and suppose that #Êl,n ≤ Rn(1+ζ) and #Êk,n ≤ Rn(1+ζ). Then
the number of crossings of the interval [rl,n, rk,n] by Y up to time 1 is bounded above
by Rn(1+ζ). Similarily, if τ(Rnθ) > 1, then |Y (t)| ≤ rk,n for all |k| ≤ Rn(1+θ) + 1 and
0 ≤ t ≤ 1. Consequently,

An ∩ {τ(Rnθ) > 1} ∩
( ⋃

k∈Z
{#Êk,n > Rn(1+ζ)}

)c

⊂
n⋃

j=1

Aj,n.

Thus, by subadditivity,

P (An) ≤ an +
n∑

j=1

P
(
Aj,n

)
,

where

an
∆= P (τ(Rnθ) ≤ 1) + P

( ⋃
k∈Z

{#Êk,n > Rn(1+ζ)}
)
.

By Lemma 2.2, an is summable; we are left to estimate P
(
Aj,n

)
.
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Since X and Y are independent, by conditioning on the number of intervals in Ij,n ∩
Fα, then applying subadditivity and integrating, P

(
Aj,n

)
is bounded above by the product

of the following three terms:

(i) the expected number of intervals in Ij,n ∩ Fα;

(ii) Rn(1+ζ) (i.e., the number of observed crossings per interval);

(iii) the probability that the time to cross an interval with length j/Rn is faster than
γG(j/Rn).

By (4.1), we see that the probability that a given interval in Ij,n is in Fα is bounded
above by Kn1/2R−nα2/2jα2/2. Since the number of intervals in Ij,n is asymptotically
2Rn(1+θ), it follows that the expected number of intervals in Ij,n ∩ Fα is bounded above
by

Kn1/2Rn(1+θ−α2/2)jα2/2.

This estimates the term described in (i), and it remains to estimate the probability in (iii);
however, by (2.1), this probability is bounded above by

Kn1/2R−n/(2γ)j1/(2γ).

It follows that
P

(
Aj,n

)
≤ KnRn(2+θ+ζ−α2/2−1/(2γ))jα2/2+1/(2γ).

By (4.4),

2 + θ + ζ − α2

2
− 1

2γ
= −q.

Moreover, since q, γ, θ ∈ (0, 1), (4.4) yields:

α2

2
+

1
2γ

= 2 + q + γ + θ ≤ 5.

Consequently,
P

(
Aj,n

)
≤ KnR−nqj5,

and
n∑

j=1

P
(
Aj,n

)
≤ Kn7R−nq,

which certainly sums in n, since q > 0. We have shown that
∑

n P (An) < ∞. By the
Borel-Cantelli lemma, it follows that

(4.5) P
(
An, i.o.

)
= 0.
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Hence on a set of full measure and for n sufficiently large, we can make the following
observation: let 0 ≤ i < j be integers and suppose that Tj,n ≤ 1. Let a ∆=Y (Ti,n)∧Y (Tj,n)
and b ∆=Y (Ti,n) ∨ Y (Tj,n). Whenever

(4.6) b− a ≤ n

Rn
and |X(b)−X(a)| ≥ αF (b− a),

it too must be the case that

Tj,n − Ti,n ≥ γ(α)G(b− a).

Indeed, by (4.6), the interval [a, b] determined by Ti,n and Tj,n is smaller (in length) than
n/Rn and is in Fα; thus by (4.5), Tj,n−Ti,n must exceed some time to cross this interval,
which, in turn, must exceed γ(α)G(b− a).

Fix an integer m ≥ 1 and let αk = k
√

2/m for 0 ≤ k ≤ m+1. This determines (m+1)
intervals, [α0, α1] . . . [αm, αm+1]. Corresponding to each of the latter intervals, by (4.3),
we get (m+ 1) values of γ: γ(α0), . . . , γ(αm). Let

Cm
∆=2−3/4 max

{
α1

γ1/4(α0)
, . . . ,

αm+1

γ1/4(αm)

}
.

Let Ti,n, Tj,n, a and b be as in the previous paragraph. By the usual modulus of continuity
of X,

αkF (b− a) ≤ |X(b)−X(a)| < αk+1F (b− a),

for some 0 ≤ k ≤ m. Thus [a, b] is in Fαk , for some αk. Consequently, provided that
b− a ≤ n/Rn, it follows that

Tj,n − Ti,n ≥ γ(αk)G(b− a) and |X(b)−X(a)| ≤ αk+1F (b− a).

We recall that F (G−1(x)) ∼ 2−3/4ψ(x) and ψ(γx) ∼ γ−1/4ψ(x) as x → 0+. Let ε > 0
be given. Then for x ≥ 0 sufficiently small, F (G−1(γx)) ≤ (1 + ε)2−3/4γ−1/4ψ(x). Thus,
assuming that b− a ≤ n/Rn, we have shown:

|Z(Tj,n)− Z(Ti,n)| ≤ (1 + ε)Cmψ(Tj,n − Ti,n).

Finally, let δ > 0 satisfy

(4.7)
n+ 1
Rn+1

≤ 2
√
δ log(δ−1) ≤ n

Rn
.

Let Ti,n < Tj,n ≤ 1 with Tj,n − Ti,n ≤ δ. Then, by the uniform modulus of continuity of
Y , it follows that

|Y (Tj,n)− Y (Ti,n)| ≤ 2
√
δ log(δ−1) ≤ n

Rn
,

13



which shows that the interval [a, b] = [Y (Ti,n)∧Y (Tj,n), Y (Ti,n)∨Y (Tj,n)] is not too wide.
Thus we have shown that whenever Ti,n < Tj,n ≤ 1 with Tj,n − Ti,n ≤ δ, then

(4.8) |Z(Tj,n)− Z(Ti,n)| ≤ (1 + ε)Cmψ(Tj,n − Ti,n).

The above is the desired upper bound for the modulus of continuity of Z along the random
subsequence given by {Ti,n; i}. We finish the proof of the upper bound (and hence that
of Theorem 1) by chaining deterministic times to the subsequence {Ti,n; i} and showing
that the “slack” in this chaining approximation is negligible.

Given 0 ≤ s < t ≤ 1 with t− s ≤ δ, either

(i) t−s ≤ n2/R2n, in which case we can use (1.2) (i.e., the inexact modulus of continuity
of Z) and conclude that for some K > 0,

|Z(t)− Z(s)| ≤ Kψ(n2/R2n); or

(ii) n2/Rn < t− s ≤ δ. In this case, using Lemma 2.3, for all n sufficiently large, ∆Ti,n ≤
n2/R2n for all Ti,n ≤ 1. It is a simple task to see that there exists i such that 1 −
n2R−2n ≤ Ti,n ≤ 1. (Use time–reversal and the proof of Lemma 2.3, for instance.)
Thus, we can find i and j, such that s ≤ Ti,n ≤ Tj,n ≤ t, Ti,n − s ≤ n2/R2n and
t− Tj,n ≤ n2/R2n.

Thus, by the triangle inequality, (1.2), (4.7) and (4.8), it follows that

|Z(t)− Z(s)| ≤ |Z(t)− Z(Ti,n)|+ |Z(s)− Z(Tj,n)|+

+ |Z(Ti,n)− Z(Tj,n)|

≤ Kψ(n2/R2n) + (1 + ε)Cmψ
(
Tj,n − Ti,n

)
≤ Kψ(n2/R2n) + (1 + ε)Cmψ

(
t− s

)
≤ Kψ(n2/R2n) + (1 + ε)Cmψ

(
δ
)
.

Therefore,

ω(δ) ≤ Kψ(n2/R2n) + (1 + ε)Cmψ(δ).

However, by (4.7), δ ∼ Kn9/R2n as n → ∞. This shows that ψ(n2/R2n) = o
(
ψ(δ)

)
and

from this observation, it follows that

lim sup
δ→0+

ω(δ)
ψ(δ)

≤ (1 + ε)Cm a.s..

14



We are done since since ε > 0 is arbitrary and, by (4.3) and the definitions of Cm and αm,

lim
m→∞

lim
ζ→0

lim
θ→0

lim
q→0

Cm = sup
α∈[0,

√
2]

α(4− α2)1/4

23/4
= 1.

This finishes the proof of the upper bound and hence that of Theorem 1. �
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