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v := a probability distribution on (—oo, )

Assume: Mean(v)=0and SD(v)=1

v-Random Walk: X;(0),X5(0),... '~ v
$(0) := X1(0) +--- 4+ Xn(0)

Adding Dynamics: (Benjamini, Haggstrom, Peres,
and Steif, Ann. Prob., 2003)

Wantt — {§(t)}_4 to be stationary, strong Markov in
(—o0,00)R+, and with invariant measure v.

Thus, in particular, for any t > 0, {S(t),S(t),...} @)

{$1(0),$(0),...}; evolve in stationarity.



One Interesting Solution:

[1 For everyindexi > 1run an indep’t rate-one Pois-
son process

(1 Every time the PP jumps replace X;(t—) by an in-
dep’t copy [Xi(0—) := X;(0)]

1 All PP’s are independent of all X’'s

[] Finally define (n>1,t > 0)

Sh(t) == Xq(t) + -+ Xn(t)

As t varies, {$(t),S(t),...} forms an infinite family of
Interacting random walks; interactions are “local.”



An a.s.-property that holds for $;(t), S(t), ... simulta-
neously for all t > 0 is said to be “dynamically stable.”
Else, it is “dynamically sensitive.

Theorem 1 (Benjamini et al) [1 If v has only one
moment ( := 0), then SLLN is dyn. stable; i.e.,

P{ lim w:Oforalltzo}zl.

N—o0 N

[0 If Mean(v) =0and SD(v) =1, then the LIL is dyn.
stable; i.e.,

. Sh(t) }
P< limsu —J1forallt>0}% =1.
{ n—>oop\/2nlnlnn a




Define dyn. walks in Zd analogously. Then,

Theorem 2 (Benjamini et al, 2003) If v defines the
simple walk on Z9 then “Transience” is dyn. stable iff
d>5.

[Cf. Polya: {$1(0),$(0),S3(0),...} is transient iff d >
3]

Theorem 3 (Benjamini et al, 2003) If v lives on a fi-
nite subset of Z and Mean(v) = 0 then “Recurrence”
Is dyn. stable.

Benjamini et al (2003) conjectured that there proba-
bly exists a connection to the OU process in Wiener
space. Answer: “Yes.” Without having to define the
latter process:



Invariance: Suppose Mean(v) =0and SD(v) =1.

Theorem 4 (Kh., Levin, M éndez, 2004) As n — oo,

(1 (012
{S[nsj } (047, {Us(t) }stefo,q
ste(0,1]

/n

where U is a centered, Gaussian process with

E [Us(t)Uu(V)] = min(s,u) x e~ [TV,

For a related result for a related model see Rusakov
(Teor. Veroyatnost. i Primenen, 1989).

An “explicit construction” of U: Set Us(t) = e 1B (s, e?)
where 3 denotes the Brownian sheet:

E[B(s,t)B(u,v)] = min(s,u) x min(t,v).



Dyn. Instability of the LIL:  Suppose v =N(0,1). Set
® = N(0,1)-cdf, and = 1— .

Theorem 5 (Kh., Levin, M éndez, Ann. Prob. , 2004+)
The integral-test refinement to the LIL is dyn. unsta-
ble. In fact, for H T,

Sh(t) > H(n)yv/n "t > 0i.o. iff

/1°° H4(t)CD(H Et)) dt -

00,

Cf. Erd0s: For t > Ofixed, S(t) > H(n)\/ni.o. iff

/1°°H2(t)¢(HEt))dt .

Question: How big is the set of exceptional times t?



A Multifractal Analysis:  Set v =N(0,1). If H T then

N, ={t>0: S(t) >H(n)y/ni.o.}.

Theorem 6 (Kh., Levin, M éndez, 2004) A.s.:

4—8(H)
2

O(H) = sup{C >0: /;oHC(t)E(t)OIt < 00}.

dim,, Ay, = min <1 : ) , Where

t

(dim,, A<Omeans A= g.) The proof rests on several
calculations, one of which is interesting in the present
context:



Moderate Deviations: Let v =N(0,1). For any fixed
compact set E C [0,1] consider Kg(¢g) to be the Kol-
mogorov g-entropy of E; i.e., the maximum n for which

3Xq,...,% € E such that min,_ ., X —Xj| > €.

Theorem 7 (Kh., Levin, M éndez, 2004) Suppose 7 |
c while z, = o(n/4). Then, there exists ¢ > 1 such that
for all compact E C [0,1] and all n > 1,

1 _ P{SURcE Sult) > Zny/N)
= Ke(/R)O(z)

<C.

Corollary 8 (Kh., Levin, M éndez, 2004) Suppose Zis
the OU process; i.e., it solves dZ = —Z dt+ v/2dW.
Then, there exists ¢ > 1 such that for all compact E C
[0,1] and all A > 1,

1 PlSUREZ(H) 2 A} _
= TKe(/A99()

C.




Other Implications Exist:  For instance, for all com-
pact, non-random E C [0, 1],

2
: —2ninl
suplim sup(sq(t» nnnn
teE N—oo ninininn

=3+2dim,E,

where dim_, denotes “packing dimension.” When E =
{0} (any singleton will do) dim_, E = 0, and we obtain
a classical result of Kolmogorov. On the other hand,
dim_,[0,1] = 1, and this yields an earlier results of the
authors (Ann. Prob., 2004+).



A Stability Result: If v denotes a distribution on Z
that has finite support, then a theorem of Benjamini et
al (2003) asserts that all Sy(t)'s are recurrent simulta-
neously. This holds for more general walks: Suppose
Mean(v) =0 and SD(v) = 1. Also assume that v has
(24 ¢) finite moments for some € > 0. Then,

Theorem 9 (Kh., Levin, M éndez, 2004) A.s.:

[1 Not a “standard” extension

[ We do not know what happens when € =0

[] Requires a new “gambler’s ruin” result of indep’t
Interest:



Gambler's Ruin:  Henceforth, {xj};° ; arei.i.d. Z-valued,
and define a random walk sy := X1+ --- 4+ Xn. We as-
sume that E[xq] = 0 and Var(x;) = 62 < «. Consider
the first—passage times,

T(2):=inf{n>1: sh=12z}.

Gambler’s ruin problem (Pascal, Fermat, ---) asks for
an evaluation of P{T(z) < T(0)}. If X's are nice, then
use martingales. In general, this idea does not seem
to work.

Theorem 10 (Kh., Levin, M éndez, 2004) If G denotes
the additive subgroup of Z generated by the possible
values of {s}>_, then there exists ¢ = ¢c(c2,G) > 1
such that for all ze G,

c1 c

1+ 12 <P{T(2<T(0)} < 1+




An Outline: First prove that P{T(0) > n} < n~1/2. [Half
Is easy: P{T(0) > n} > P{.7 > n} where .7 denotes
the first time s, enters (—,0). Then appeal to Feller's
Tauberian estimates.]

Then go one more step and prove that P{T(0) > n} <
1z|/+/n (lower bound OK if |z = O(y/n); upper bound
generic.) Once again, half is easy: PA{T(0) > n} >
P,{Z > n}, which is greater than c|z//,/n (Pemantle
and Peres, 1995).

One more easy half-proof: By the strong Markov prop-
erty,

P{T(0) >n}>P{T(z2) <T(0)} x P{T(0) > n}.

Assemble the preceding 2 estimates to obtain an up-
per bound for P{T(0) < T(2)}.



